o


Роуз С.

Устройство памяти. От молекул к сознанию.


Оглавление


Предисловие с выражениями признательности .............5

Глава 1. В поисках Розеттского камня
Глава 2. Как мы работаем
Глава 3. Как возникают воспоминания
Глава 4. Метафоры памяти
Глава 5. Дыры в голове — дыры в памяти


Глава 6. Животные тоже помнят
Глава 7. Эволюция памяти


Глава 8. Молекулы памяти
Глава 9. Морские улитки и гиппокамп: идеальные объекты?

Глава 10. Никто кроме нас, цыплят
Глава 11. Порядок, хаос, порядок: критерии пятый


Глава 12. Интерлюдия: лабораторные исследования - это еще не все
Глава 13. Из чего состоят воспоминания



Литература


Глава 8

Молекулы памяти


Зачем нужна биохимия?

Когда в 1929 году физиолог-любитель из Швейцарии Ганс Бергер описал, как с помощью набора электродов, закрепленных на голове человека, ему удалось зарегистрировать непрерывные вспышки электрической активности в мозгу, никто сначала не принял это сообщение всерьез. Обсуждая аналогии памяти, я уже упомянул феномен «животного электричества» и его связь с нервной активностью; он был известен очень давно, по крайней мере с того времени, как в 1790-х годах Гальвани продемонстрировал в Болонье, как электрические разряды вызывают подергивание лапок лягушки. В 1875 году Кейтон, профессор физиологии из Ливерпуля, показал, что электроды, приложенные к обнаженному мозгу кроликов, регистрируют электрические импульсы. Однако Бергер выявлял импульсы, проходящие через кости черепа, поэтому их вполне можно было бы счесть артефактом, если бы в середине тридцатых годов нашего века кембриджские нейрофизиологи Эдриан и Мэттьюз не подтвердили эти наблюдения в систематических исследованиях. Непрерывная электрическая активность мозга носила характер своеобразных волн, различавшихся во время сна и бодрствования, в периоды умственного напряжения и покоя.

Одно время казалось, что тайны души заключаются в изменчивых линиях электроэнцефалограммы (ЭЭГ) [1]. Нельзя ли найти в них и ключ к механизмам памяти? Быть может, воспоминания хранятся в форме непрерывно реверберирующих цепей, электрических контуров, создающихся в результате замыкания и размыкания различных синаптических соединений? Увы, недолгая популярность этой идеи не выдержала испытания: как показали исследования, долговременная память сохраняется даже после дезорганизации всей электрической активности мозга (например, при электрошоке или припадке эпилепсии) или почти полного ее прекращения, как при коме или сотрясении мозга. Поэтому, не исключая зависимости самых кратковременных фаз памяти от непрерывной электрической активности мозга (о чем в свое время будет сказано подробнее), следует подчеркнуть, что любой сколько-нибудь длительный след памяти должен быть воплощен в каком-то более стойком изменении.

Какую, однако, форму могут иметь такие следы и на каких уровнях их надо искать? Согласно концепции Хебба, изложенной в главе 6, формирование следов памяти связано с ростом или перестройкой синапсов - процессом, приводящим к построению новой системы межнейронных связей, которые могут в дальнейшем сохраняться. Эта гипотеза получила широкое признание, хотя отнюдь не остается единственной. Сколько же синапсов и нейронов может соответствовать одному простейшему следу? И что такое «простейший след»? Можно ли сказать: «одна ассоциация - один синапс»? Или в ассоциации участвует сразу много клеток и синапсов? Находятся ли эти клетки и синапсы в определенном участке мозга или разбросаны по разным областям? Не повторяется ли каждый след многократно? Споры относительно локализации отражают противоречивость данных, полученных при изучении мозга, и попыток интерпретации их на клеточном уровне. Заключены ли воспоминания постоянно в одном и том же наборе клеток, или же их сохранение - более динамичный процесс? Все эти вопросы остаются пока без ответа даже в рамках концепции Хебба, и их решение поможет выяснить, на каком уровне клеточной организации мозга представлены следы памяти.

Чтобы ответить на эти вопросы, необходимо также создать экспериментальные модели для проверки различных гипотез и достаточно точные методы, которые позволили бы выявлять и измерять предполагаемые изменения. До самого последнего времени невероятной казалась сама мысль использовать микроскопическую технику, чтобы наблюдать изменения в структуре нейронов и синапсов, происходящие при научении, - хотя бы потому, что для этого надо хорошо представлять себе, в какой части мозга следует вести поиски и что именно измерять. Возможен, однако, иной подход: если научение действительно связано со структурными изменениями в синапсах, а синапсы построены из белков и набиты молекулами нейромедиаторов, то оно должно сопровождаться синтезом новых белков и медиаторов. Так не проще ли измерять процессы биосинтеза, чем пытаться непосредственно выявить структурные изменения?

Синтез белка

Живые организмы значительно более постоянны, чем составляющие их молекулы. Ни одна молекула в нашем теле не остается неизменной дольше нескольких недель или месяцев. На протяжении этого периода даже во взрослом организме молекулы синтезируются, выполняют свою роль в жизни клетки, а потом отбрасываются за ненадобностью, разрушаются и заменяются другими более или менее идентичными молекулами. Самое удивительное в этом безостановочном круговороте то, что строение клеток и всего тела, которые состоят из этих молекул, остается неизменным, несмотря на замену отдельных компонентов. В этом смысле недостаточно даже сравнение с автомобилем, в котором так часто выбрасывают прохудившийся глушитель, дефектную свечу или часть кузова, заменяя их новыми деталями. Тело лучше сравнить с кирпичной постройкой, из которой сумасшедший каменщик непрерывно, ночью и днем вынимает один кирпич за другим и вставляет на их место новые. При этом наружный вид постройки остается прежним, хотя материал постоянно заменяется. Белковые молекулы тела тоже заменяются («оборачиваются»), подобно кирпичам постройки, таким образом, что в среднем каждые две недели их состав обновляется наполовину. Синтез новой белковой молекулы занимает несколько минут. Образовавшаяся молекула переносится в ту часть клетки, где она нужна, и остается там на протяжении часов, недель или месяцев, пока не приходит время замены; тогда молекула покидает свое место в клетке и разрушается ферментами так же быстро, как некогда образовалась, а компоненты, из которых она построена (аминокислоты), повторно используются для синтеза других белков. В нормальных условиях скорость биосинтеза и распада белков во взрослом организме одинакова. Когда в конструкцию включается один новый кирпичик, из нее изымается в среднем один старый. Предположим, однако, что решено пристроить к вашему дому еще одну печную трубу. Для этого нужно на какое-то время увеличить скорость кладки в определенном месте строения - на крыше, не изменяя скорость выемки кирпичей; тогда их общее количество в постройке по мере наращивания трубы будет увеличиваться. После того как труба готова, скорость кладки можно опять понизить до первоначальной, уравняв ее со скоростью выемки. В результате такого кратковременного изменения режима работы у вас будет дом с трубой, который придется поддерживать так же, как до ее постройки. Именно так обстоит дело с синапсами. Если в процессе обучения они действительно возникают заново или перестраиваются, то в этот период можно ожидать ускорения белкового синтеза. И наоборот, если при запоминании требуется синтез белка для построения синапсов, то, остановив этот синтез на время обучения, можно будет блокировать образование новых следов: животное, обучавшееся выполнять определенную задачу, при попытке повторить нужные действия будет вести себя так, как будто оно не помнит, что надо делать, т. е. страдает амнезией. Таковы были представления о биохимических исследованиях памяти в начале шестидесятых годов. К счастью, тогда имелись уже простые методы для определения скорости белкового синтеза и его ингибирования (подавления). Белки образуются путем соединения в длинные цепи отдельных составляющих элементов - аминокислот, которые либо синтезируются самим организмом, либо поступают с пищей. Поэтому, измеряя скорость включения аминокислот в белки, можно судить о скорости образования последних. Если меченную радиоактивным изотопом аминокислоту (как в эксперименте I, описанием в главе 2) давать животному с кормом или вводить путем инъекции, она будет включаться в состав белков вместе с немечеными аминокислотами, и тогда образующиеся белки будут обладать слабой радиоактивностью. Уровень радиоактивности белка пропорционален скорости его синтеза, и это позволяет измерять последнюю простыми и очень чувствительными методами. В состав белков входят двадцать различных природных аминокислот, а каждый индивидуальный белок представляет собой уникальную цепочку из нескольких сотен таких структурных единиц. Точная сборка аминокислот в такого рода цепи осуществляется при посредстве другой гигантской молекулы -- рибонуклеиновой кислоты (РНК), которая в свою очередь синтезируется под прямым контролем генетического материала клетки - дезоксирибонуклеиновой кислоты (ДНК). (Именно в этом смысле, хотя и не совсем правильно, говорят, что гены «направляют» белковый синтез.) Поэтому для ускоренного образования белка может потребоваться также увеличение синтеза РНК, который можно измерить аналогичным способом, используя радиоактивный предшественник РНК.

Что касается ингибирования белкового синтеза, то почти случайно была обнаружена способность многих антибиотиков, как известно, подавляющих рост и размножение бактерий, блокировать образование микробных белков и РНК. Введение достаточных доз таких антибиотиков в мозг вызывает почти полное прекращение синтеза в нем РНК или белка на протяжении нескольких часов. Это делает принципиально возможными эксперименты двух типов. При так называемом корреляционном подходе животному вводят радиоактивный предшественник белка или РНК, а затем проводят обучение и выясняют, изменилось ли количество радиоактивного белка или РНК по сравнению с их содержанием у контрольных, необученных животных. При другом, интервентивном подходе вводят антибиотик, ингибирующий биосинтез белка или РНК, обучают животное, а потом выясняют, помнит ли оно то, чему был обучено.

В начале шестидесятых годов проводились эксперименты того и другого типа. Я уже рассказывал, какое ошеломляющее впечатление на меня, только что защитившего диссертацию, произвели опыты Хидена, в которых он регистрировал усиление биосинтеза белка и РНК в небольших участках мозга крыс, обученных балансировать на проволоке, по которой они могли добраться до корма. В последующем Хиден несколько изменил условия эксперимента. Заметив, что отдельные крысы предпочитали доставать корм либо правой, либо левой лапой, он вынуждал животных пользоваться для этой цели «неудобной» лапой, а затем оценивал изменения синтеза РНК и белка в той половине и той области мозга, где осуществлялась моторная координация «обучаемой» лапы, в сравнении с теми же процессами в области, ответственной за действия «необученной» лапы [2].

Примерно в то же время, в 1963 году, Уэсли Дингман и Майкл Спорн провели в Рочестерском университете (штат Нью-Йорк) первые опыты с использованием ингибиторов [3]. Они обучали крыс плавать в заполненном водой лабиринте и вводили им ингибитор синтеза РНК. Сначала они установили, что ингибитор не влиял на способность крыс плавать вообще и не заставлял их ошибаться, если ко времени инъекции они уже умели находить верный путь. Но если ингибитор вводили с таким расчетом, чтобы синтез РНК уже прекращался во время обучения, то при последующем испытании крысы не помнили правильной дороги. За этим экспериментом быстро последовали другие, где применялись ингибиторы белкового синтеза, и все они, по сути, приводили к тому же выводу: при подавлении синтеза белка во время обучения животных или в первые часы после его завершения крысы могли освоить задачу, но в случае более позднего тестирования (скажем, на следующий день) они вели себя так, как будто совсем не обучались. По-видимому, для долговременного запоминания необходим синтез белка [4].

Сам я на первых порах с недоверием отнесся к этим результатам. Интенсивность белкового синтеза в мозгу выше, чем в любом другом органе. Антибиотики вводились в мозг в таких больших дозах, что могли полностью блокировать образование белка на несколько часов, однако ни один из других аспектов поведения подопытных животных, по-видимому, не изменялся: ни способность выполнять ранее освоенные задачи, ни способность видеть окружающий мир и реагировать на него, ни какие-либо иные «нормальные» действия. Единственное, чего не могли делать животные, - это запоминать что-то новое. Но ведь не весь белковый синтез в организме в отсутствие ингибитора обслуживает функцию памяти; казалось бы, его блокада должна была сказаться и на других фундаментальных аспектах поведения! Но этого не случалось: появлялись статья за статьей с описанием самых разнообразных тестов, которые предлагались таким разным животным, как крысы и рыбы, и все они приводили к одному и тому же выводу. Чтобы убедиться в его справедливости, мне в конце концов пришлось прибегнуть к последнему средству, испытанному еще Фомой Неверующим: я сам стал обучать цыплят в условиях введения им ингибиторов и получил тот же результат. Значит, все было правильно!

Существует методическая проблема, о которой здесь стоит поговорить: это проблема воспроизведения (или невозможности воспроизведения) данных, полученных другими исследователями, так как именно в этом состоит «научный метод», по крайней мере если верить стандартным учебным пособиям по методологии науки. Экспериментатор сообщает о полученных им результатах, и для их проверки другие исследователи повторяют тот же опыт в своих лабораториях. Если результаты совпадают, их можно предварительно счесть верными. Если же они расходятся, необходимо решить, кто допустил ошибку в постановке эксперимента или в его интерпретации. Это и имеют в виду, когда говорят, что научное знание - это «публичное» достояние, т. е. в принципе оно доступно для проверки и может быть подтверждено или опровергнуто кем угодно, а не является просто личным убеждением1[5]. Однако даже в так называемой «фундаментальной» или «чистой» науке лишь в редких случаях предпринимаются попытки прямой проверки публикуемых экспериментальных данных (за исключением, может быть, некоторых областей физики). Простое повторение опытов, проведенных другими, - занятие отнюдь не престижное, для такой работы очень трудно получить средства, а ведущие научные журналы редко публикуют «повторные» эксперименты, если речь не идет о каком-нибудь особо дискуссионном вопросе; их не интересуют даже факты неподтверждения результатов, поэтому сообщения об экспериментах с отрицательными результатами появляются не часто2.


*1) На практике, однако, дело обстоит гораздо сложнее. Воспроизведение полученных другими данных требует специальных условий и лабораторного оборудования; это дорого и не всем доступно [6]. Возможности проверки такого мнимо «публичного» знания явно ограниченны, с чем пришлось столкнуться не одной группе активистов охраны окружающей среды при попытке оспорить заключения экспертов о безопасности того или иного мероприятия.


*2) Фурор, произведенный в конце 80-х и начале 90-х годов утверждениями Понса и Флейшмана относительно холодного ядерного синтеза и результатами Бенвениста, якобы подтверждающими ценность гомеопатии, - один из немногих случаев (помимо экспериментов по «передаче навыков», см. ниже), когда были предприняты (и оказались неудачными) попытки прямого воспроизведения данных.


Если результаты, полученные одним исследователем, вызывают интерес у другого, последний обычно старается повторить эксперимент в ином варианте, т. е. воспроизвести его на своем излюбленном объекте или в более близкой ему экспериментальной ситуации. Именно так поступил я: вместо того чтобы проверять чужие данные на крысах и мышах, которых использовали мои предшественники, я решил посмотреть, что произойдет, если я подвергну такому же испытанию своих цыплят. Этот непрямой способ воспроизведения хорош тем, что сходные результаты, полученные на разных видах животных, имеют самостоятельную ценность и могут быть опубликованы. Это в равной мере относится и к отличающимся результатам, при публикации которых совершенно не обязательно сталкивать их в лоб с ранее полученными данными. Учитывая большое разнообразие явлений биологического мира, расхождения между результатами обычно приписывают использованию разных животных (например, «межвидовым или межлинейным различиям») или особенностям экспериментальных условий и не придают им особого значения. Поэтому, не встречая опровержения, противоречивые или сомнительные результаты остаются «в литературе»: их никто прямо не отрицает, но в целом они игнорируются. Посвященные, т. е. узкая группа специалистов в той или иной области, которые проводят много времени на конференциях и семинарах, обсуждая положение дел в своей науке, либо совсем не говорят об аномальных результатах, либо сплетничают по их поводу в баре после заседания. Первым сообщениям об амнестическом эффекте ингибиторов белкового синтеза не придавали значения - чаще всего по тем же самым априорным соображениям, которые были причиной моего собственного скепсиса; не без борьбы они в конце концов добились признания у этих законодателей моды.

Лишь спустя много лет после публикации результатов первых опытов с ингибиторами мне самому пришлось вплотную заняться изучением их действия. В то время меня интересовали совсем другие вопросы, и я думал, что работа с ингибиторами будет отвлекать меня. Когда я, наконец, приступил к ней в конце 80-х годов (об этом речь пойдет в главе 10), я имел в виду более специальную цель, поскольку уже к концу 60-х - началу 70-х годов широко развернулись наши исследования по импринтингу. Общий план экспериментов состоял в том, что у однодневных цыплят создавали импринтинг, вводили им радиоактивные предшественники РНК или белка и измеряли включение их в РНК и белок в различных областях мозга. Если это перечисление операций кажется вам чересчур сухим и абстрактным, я опишу их несколько подробнее.

Прежде всего, каким образом я вызываю импринтинг? В естественных условиях цыплята очень скоро (не позднее трех дней после вылупления) начинают узнавать мать и повсюду следовать за ней. Но их понятие о «матери» вначале довольно расплывчато. Сразу после вылупления они пробуют приблизиться и следовать за первым же увиденным медленно движущимся предметом, который размерами и цветом более или менее напоминает курицу. Исследователи импринтинга использовали для этой цели чучело или даже просто красный шар на вращающейся рукоятке. Пэт Бейтсон разработал стандартную процедуру обучения. Цыплят помещают во вращающееся на оси колесо вроде того, какое обычно покупают для клетки с хомяками. Колесо ставят перед вращающимся устройством, дающим проблески красного или желтого света. Проблески создают впечатление движущегося света, и помещенные в колесо цыплята пытаются следовать за ними. Спустя примерно час свет выключают, чтобы цыплята немного, отдохнули, после чего проводят тестирование, давая птенцам возможность выбирать между светом, на который у них выработался импринтинг (скажем, красным) и другим, незнакомым (желтым). Разницу в частоте следования за красным и за желтым светом считают показателем силы импринтинга.

В определенное время после начала светового воздействия цыплятам вводили радиоактивный предшественник, затем продолжали тренировку и проводили испытание, после чего животных забивали. Поскольку мы не знали, в какой части мозга могут возникнуть изменения, и не очень разбирались в его анатомии (в то время мало кто знал анатомию куриного мозга), мы произвольно делили передний мозг на две части, называя их просто «крышей» и «основанием». Впоследствии, по мере того как мы получали все более точные данные о локализации изменений, подразделение мозга становилось более детальным и анатомически более осмысленным. Пэт и Габриел Хорн кодировали образцы мозговой ткани и посылали их мне для анализа. После первых же экспериментов стало ясно, что в сравнении с «контрольными» птицами, которые находились в темноте или подвергались воздействию рассеянного верхнего света, у цыплят с импринтингом на проблески в часы после тренировки усиливался биосинтез РНК в крыше мозга. Повторив опыт с предшественником белков, мы нашли, что и синтез белка усиливается. Я продолжил более детальные биохимические исследования с двумя моими первым диссертантами.

Однако в то время Пэта, Габриела и меня интересовали не столько биохимические подробности, сколько вопрос об интерпретации результатов. Хотя мы и установили, что стимуляция цыплят сопровождается усилением биосинтеза РНК и белков, но как показать, что оно было результатом именно обучения? Может быть, биосинтез усиливался просто потому, что цыплятам приходилось больше двигаться в колесе, чем их собратьям, содержавшимся в темноте или при слабом освещении? Или вспышки света просто возбуждали их или же как-то влияли на зрительную систему? Каждый из этих факторов мог быть причиной наблюдавшегося усиления синтеза РНК и белка. Не так легко придумать эксперименты для проверки этих альтернативных возможностей, и в начале 70-х годов нам понадобилось несколько лет, чтобы одну за другой опровергнуть их. К 1973 году нам, наконец, удалось убедить самих себя и, я надеюсь, всех других интересующихся этой проблемой, что биохимические изменения были в самом деле результатом обучения, а не сопутствовавших обстоятельств, таких, как моторная активность или зрительные впечатления. Например, в одном из ключевых экспериментов мы обучали более сотни цыплят, определяя показатель импринтинга, двигательную активность (т. е. характер поведения в колесе) и синтез РНК. Последний не зависел от моторной активности или от стресса (насколько о нем можно было судить, например, по частоте различных звуков, издаваемых цыплятами), но достоверно коррелировал с проявлениями импринтинга. Иными словами, чем лучше птенцы научались различать световые сигналы и адекватно реагировать на них, тем больше РНК синтезировалось в крыше переднего мозга [7].

Таким образом, наши работы и данные других лабораторий, полученные примерно в то же время, показали, что для образования следов памяти необходим синтез РНК и белка. Казалось, можно было ожидать быстрых успехов в области биохимии памяти. К сожалению, этого не случилось. Вместо того мы получили мешанину из случайных биохимических данных и противоречивых методических соображений, что задержало прогресс в изучении памяти более чем на десятилетие. Поскольку ошибки всегда поучительны, стоит затратить немного времени и разобраться в том, что произошло.

Молекулы памяти и артефакты

Присяжный философ молекулярной биологии Гюнтер Стент назвал конец пятидесятых и начало шестидесятых годов классическим периодом молекулярной биологии [8]. В 1953 году Уотсон и Крик расшифровали структуру ДНК и показали, что в ее знаменитой двойной спирали заключены механизмы передачи генетической информации и управления белковым синтезом; в дальнейшем были подробно изучены также процессы биосинтеза белка и нуклеиновых кислот и начали выясняться способы их исключительно точного контроля на клеточном уровне. Не было, казалось, невозможного для этой новой удивительной науки. Там, где раньше биологи и биохимики искали ответы на вопросы, откуда клетка получает энергию и как использует ее, молекулярная биология устанавливала свои собственные ценности. Ее интересовала не энергия, а информация, она ориентировалась на использование методов столь же новых в то время компьютерных дисциплин. Можно было думать, что регуляция и воспроизводство клетки сводятся к контролю и воспроизведению информации. Гигантские молекулы, олицетворявшие эти новые представления, - белки, ДНК и РНК - отличались от гораздо более скучных малых молекул, с которыми раньше имели дело биохимики, тем, что они были воплощением информации: это были информационные макромолекулы. А поскольку мозг - всего лишь машина для обработки информации, вполне логично было предположить, что он выполняет эту работу, каким-то образом используя те же информационные макромолекулы.

Более того, нельзя ли само воспроизводство вида рассматривать как функцию одной из форм памяти - генетической памяти, как результат способности ДНК, передаваемой от родителей потомству, нести в своей структуре точные инструкции для будущего построения нового организма? Но если ДНК служит носителем генетической памяти, то почему бы ей (или РНК, или белку) не быть также носителем памяти мозга?

Эта основанная на игре слов логика нашла признание и в одновременно развивающейся иммунологии. Антитела представляют собой белки, синтезируемые клетками иммунной системы для инактивации «чужеродных» молекул и противодействия им, они позволяют организму сохранять «память» о незваных гостях и благодаря этому быстро нейтрализовать их при повторном вторжении. А коль скоро иммунологическую память тоже обеспечивают белки, нет ли сходства между действующими в обоих случаях механизмами? Забудьте о структуре, о сложном сплетении десяти миллиардов нейронов и триллионах синаптических связей между ними, существующих в мозгу. Может быть, сами макромолекулы и служат носителями памяти? Правда, ДНК несколько перегружена ответственностью за генетическую память, но так ли уж невероятно, что накопленные за всю жизнь воспоминания закодированы в мириадах уникальных белковых последовательностей? Влияние молекулярно-биологической риторики было (и остается) настолько сильным, что она увлекла даже тех, кто имел все основания следовать собственным курсом. Обаянию логики новых представлений поддались молекулярные биологи и иммунологи того времени (среди захваченных первой волной энтузиазма, но в конце концов удержавшихся на позициях здравой нейробиологической теории были Джералд Эделмен и Фрэнсис Крик). Это поветрие проникло и на страницы самых престижных журналов. Вот примеры, позволяющие почувствовать дух той эпохи:

Известны три типа биологической памяти: а) генетическая память, открытие и расшифровка которой составляют заслугу молекулярной биологии, б) обычная память, являющаяся функцией мозга, и в) иммунологическая память. Несмотря на видимое различие этих форм памяти, у них, вероятно, много общего, и не исключено, что все три имеют общий механизм [9].

Были зачарованы даже трезво мыслящие создатели математических моделей, о чем свидетельствует Дж.С.Гриффит, который в начале пятидесятых годов участвовал в работах Уотсона и Крика по расшифровке структуры ДНК. В статье, написанной им совместно со старейшим биохимиком Генри Малером и предлагавшей теорию, которую по не совсем понятным мне причинам они назвали «ДНК-зависимой теорией памяти», имеется следующее замечание:

...Интуитивно ощущалось, что ДНК и может служить хранилищем не только генетической, но и приобретенной информации... Интересна сама возможность того, что неспособность зрелых нервных клеток делиться имеет своей целью предотвратить разрушение приобретенной информации, каким-то образом хранящейся в их ДНК [10].

Идеи такого рода не потеряли своей привлекательности и поныне; голоса их приверженцев были отчетливо слышны в 70-х и 80-х годах, а в несколько более изощренной форме звучат и в наши дни:

Индивидуальные молекулы служат фундаментальными единицами принятия решений в мозгу... Функция нейронов состоит в том, чтобы обеспечивать связь этих единиц между собой [11]. В данной статье поведение животных, в особенности научение и память, сводится к поведению белков - либо индивидуальных, либо собранных в сверхструктуры... Взаимодействие миллиардов таких молекулярных событий, осуществляемое через надлежащие связи, приводит к сложным формам научения у человека и животных [12].

Экспериментальные данные, указывающие на роль биосинтеза РНК и белков в образовании следов памяти, легко вписывались в новое молекулярное мышление, однако положение особенно обострилось после того, как стали появляться сообщения о совершенно необычных опытах на планариях. Инициатором этих исследований был непредсказуемый Джеймс Мак-Коннелл из Анн-Арбора (штат Мичиган), который в серии работ, появлявшихся в шестидесятые годы сначала в обычных научных журналах, а потом в его собственном издании под экзотическим заглавием Worm-Runner Digest1описывал опыты с обучением плоских червей. Животных подвергали воздействию света в сочетании с электрическим ударом, после чего разрезали на мелкие части и скармливали другим, необученным червям. По утверждению Мак-Коннелла, последние начинали вести себя так, будто помнили условные реакции, которые были свойственны съеденным ими особям, тогда как у червей, которым скармливали необученных собратьев, поведение не изменялось [13]. Упоминания об этих опытах в течение нескольких лет мелькали в заголовках научных и общедоступных публикаций, пока не приобрели дурную славу, так как выяснилось, что у плоских червей вообще очень трудно выработать ассоциацию между световым стимулом и электрическим ударом, не говоря уже о воспроизведении последующих этапов эксперимента.


*1) Что-то вроде «Обозрения по гонкам червей». - Прим. ред.


Однако к тому времени это было уже не важно, так как стали появляться сообщения об аналогичных опытах на млекопитающих. Одна из первых публикаций принадлежала ученику Мак-Коннелла Аллану Джекобсону, работавшему в Лос-Анджелесе, который в 1965 г. сообщил, что он обучал крыс подходить к кормушке при вспышке света или щелчке, после чего забивал животных, экстрагировал из их мозга РНК и вводил ее в пищеварительный тракт необученных особей; тогда последние тоже приобретали склонность подходить к кормушке при подаче соответствующего сигнала (щелчка или световой вспышки), хотя кормушка была пуста и животные не получали подкрепления. Джекобсону удалось даже «передать» таким образом навык подхода к кормушке от крыс хомячкам [14].

Между тем сходные исследования начали проводить на людях. Юэн Камерон, психолог из Университета Мак-Гилла, добавлял в пищевой рацион пожилых людей с расстройствами памяти большие количества РНК (обычно 100 г экстракта дрожжевой РНК, что действительно очень много). Он утверждал, что это значительно повышало способность его пациентов вспоминать события прошлого (надо думать, их собственного, а не прошлого дрожжевых клеток!) [15]. Более чем вероятно, что у обследованных Камероном людей из дома престарелых память улучшалась уже от одного сознания, что их заметили, поместили в клинику и проявляли повышенное внимание во время эксперимента1.


*1) См. главу 5. Это явление известно как эффект Хоторна, который был случайно открыт в исследовании, имевшем целью оценку влияния разных форм организации труда рабочих на его производительность.


Или, возможно, их просто плохо кормили, как это нередко бывает в домах для престарелых, и вводившаяся РНК служила полезной добавкой к рациону. При использованном способе введения РНК с пищей она, по-видимому, расщеплялась в пищеварительном тракте на свои компоненты, которые и всасывались затем в кровь2. Данные Камерона вызывали сомнение отчасти и из-за отсутствия в его исследовании контрольной группы, а позднее, после его смерти, научная репутация этого автора была непоправимо подорвана, когда выяснилось, что значительная часть его экспериментальной работы долгое время секретно финансировалась ЦРУ, включая аморальные опыты по изучению поведенческих эффектов ЛСД3, который тайком вводили ничего не подозревавшим испытуемым [17].


*2) Интересно, что спустя несколько лет, в конце 70-х - начале 80-х годов, группа исследователей под руководством фармаколога Ганса-Юргена Маттиеса (Магдебург, тогда в ГДР) сообщила, что введение больших доз предшественника РНК - оротовой кислоты - улучшило память крыс в разнообразных лабораторных тестах [16]. Оротовая кислота входит теперь в длинный перечень «компенсирующих средств» и «стимуляторов памяти», которые все чаще появляются на прилавках сомнительных магазинов «лечебного питания», несмотря на отсутствие каких-либо данных об их необходимости для организма или эффективности.


*3) Диэтиламид лизергиновой кислоты, галлюциногенный препарат. - Прим. ред.


Утверждения об улучшении памяти под действием РНК вызвали острую полемику в научной литературе; многие лаборатории пытались воспроизвести эти результаты, но в большинстве случаев безуспешно. В том же году, когда Джекобсон опубликовал свою работу, в авторитетном журнале Science появилось сообщение за подписью двадцати трех авторов о том, что им не удалось воспроизвести его результаты [18]. На этом все могло бы закончиться, но кто-то обратил внимание, что при использованной Джекобсоном методике экстрагирования РНК из мозга крыс наряду с нею выделялось большое количество белка и других примесей. Значит, активным материалом могла быть вовсе не РНК? К 1967 году лаборатории, занимавшиеся «переносом памяти», возобновили работу и стали вводить различные экстракты мозга, получая самые разнообразные результаты (например, какая-то группа обучала одних крыс нажимать на рычаг правой лапой, а других - левой, но только одну из этих двух форм поведения удавалось передать другим особям!).

Наиболее систематически изучал этот вопрос Джорджес Унгар из Бейлоровского университета в Хьюстоне (Техас). В своих экспериментах он использовал тот факт, что грызуны (крысы или мыши), имея возможность выбирать между освещенным и темным отделениями клетки, предпочитают находиться в темноте. Унгар помещал крыс в ящик с выходом на освещенный манеж, в одном из углов которого имелось темное отделение. При попытке забежать в него крысы получали электрический удар и в результате быстро отучались от врожденной привычки. После этого экстрагированный из их мозга материал впрыскивали мышам, которых помещали в аналогичные условия, предоставляя выбор между светом и темнотой, но без электрического воздействия. По утверждению Унгара, такие мыши отказывались заходить в темное отделение - в отличие от контрольных мышей, которым вводили материал от необученных крыс.

Вместе со своими сотрудниками Унгар предпринял попытку выделить вещество, якобы передающее информацию о «страхе перед темнотой» в чистом виде. Я уже упоминал, что механизм действия белков и РНК в такого рода экспериментах всегда оставался биохимической загадкой, поскольку все эти крупные молекулы быстро распадаются в кишечнике на составляющие компоненты - аминокислоты или нуклеотиды - еще до включения в общий обмен веществ реципиента. И действительно, активным фактором Унгара оказался не белок и не нуклеиновая кислота, а пептид (пептиды - вещества, образованные короткой цепью не более чем из 15-20 аминокислотных остатков), который можно было вводить путем инъекции, что позволяло избежать его переваривания в желудочно-кишечном тракте. Полученный пептид состоял из 15 аминокислот и был назван «скотофобином» (от греч. скотофобия - боязнь темноты). После большого шума эти данные были опубликованы в журнале Nature вместе с критическими замечаниями одного из рецензентов, химика Уолтера Стюарта [19]1 - вещь по тому времени неслыханная.


*1) К восьмидесятым годам Стюарт стал конгрессменом США; Джон Мэддокс, редактор Nature, очень ценил его как изобличителя научной недобросовестности в самых разных областях, от технологии изготовления ложек и гомеопатии до вопросов приоритета.


Критика Стюарта касалась в основном не поведенческого аспекта опытов Унгара, а химической чистоты и состава скотофобина. Я же, как и другие нейробиологи, усматривал в результатах этих опытов еще и иные неправдоподобные вещи (даже если бы эксперимент удалось воспроизвести, а к этому многие лаборатории относятся весьма скептически). Как ничтожные количества введенного пептида могли направляться к нужным нейронам и проникать именно в них, чтобы закодировать новую информацию памяти? Почему высокоспецифические элементы памяти и поведения у разных особей или видов животных должны кодироваться одним и тем же пептидом? И если пептиды действительно кодируют память, не должно ли их быть в мозгу гораздо больше, чем удалось обнаружить? Если бы на самом деле существовали «пептиды памяти» и концентрация каждого из них была такой же, как концентрация скотофобина, то для кодирования воспоминаний на протяжении человеческой жизни их содержание в мозгу достигало бы, наверное, сотни килограммов, что намного больше среднего веса нашего тела.

Однако наиболее серьезные сомнения вызывало другое обстоятельство. Действительно ли поведение мышей после инъекции «скотофобина» было идентично результату научения? Позвольте пояснить это. В экспериментах Унгара мышей выпускали на освещенный манеж и наблюдали за их поведением. При этом отмечали время, которое требовалось животным, чтобы зайти в темное отделение, и если их не оказывалось там к заранее установленному сроку, скажем через минуту, опыт прекращали. Нужно было сравнивать время, затраченное мышами, получавшими материал от обученных и от необученных крыс. Первые отличались от вторых тем, что получали электрический удар, т. е. подвергались стрессорному (болевому) воздействию при попытке проникнуть в темный ящик. У мышей и крыс реакция на стресс обычно проявляется в оцепенении - животное застывает в неподвижности. Предположим теперь, что в результате стресса, связанного с электрическим ударом, образуется какой-то гормон, например пептидный, который вызывает оцепенение. В мозгу обученных (т. е. подвергавшихся «наказанию») крыс его концентрация должна быть выше, чем у необученных животных, и при введении мышам он в свою очередь должен вызывать оцепенение. В опытах Унгара это поведение регистрировалось бы как задержка перехода в темное отделение и могло быть простым следствием относительно малой подвижности мышей-реципиентов. Его эксперименты были построены таким образом, что эту пониженную активность можно было принять за усвоенную под воздействием скотофобина специфическую реакцию. На самом же деле если что-то и «передавалось» мышам, то это было не специфическое приобретенное поведение, а общая эмоциональная реакция на стресс, что совсем не одно и то же.

Вскоре после начала этой полемики Унгар умер, что стало поводом для не совсем этичного предложения поставить заключительный эксперимент, введя экстрагированный из мозга ученого материал его критикам, т. е. провести испытание на людях, которое, как я подозреваю, сам Унгар полностью бы одобрил! Как бы то ни было, с его смертью из научной литературы исчезли упоминания о скотофобине и о самих экспериментах по переносу следов памяти. (Среди тех, кто дольше всего участвовал в работах по передаче памяти, следует упомянуть венгерского энзимолога Фридриха, чьи взгляды на ее молекулярную основу я цитировал выше.)

Я не хочу сказать, что все эти исследования были в методическом отношении столь же несостоятельными, как описанные здесь, хотя подозреваю, что во многих случаях дело обстояло именно так. Множество необъясненных и нерассмотренных данных разбросано по страницам научных журналов за первую половину семидесятых годов, но автор не знает их и не обсуждает, так как исследовательскую парадигму передачи памяти теперь уже не принимают всерьез; она пала еще одной жертвой научной моды, и на этот раз - в отличие от срезов Мак-Илвейна - вполне заслуженно. Поэтому никто не пытается искать объяснения по видимости аномальным данным. Большинство из нас удовлетворяется мыслью, что они могли быть результатом недостаточной статистической оценки, неправильного планирования экспериментов, излишней увлеченности при интерпретации неоднозначных результатов или (как в опытах Унгера) ошибочного истолкования биохимических и фармакологических последствий стресса либо других, скорее всего неспецифических аспектов поведения. Может быть есть и еще что-то, не соответствующее нашим современным моделям? Но сейчас никто из нас не хочет тратить время на проверку всех этих возможностей.

Неспециалистов, а также и лжеученых нередко беспокоит такое явное нежелание ученых уделять время анализу разного рода парадоксальных наблюдений, которые не укладываются в принятые экспериментальные парадигмы: кольцевых фигур на хлебных полях, экстрасенсорного восприятия, НЛО, ароматерапии и прочего. Для таких критиков это обстоятельство служит лишним подтверждением узости ортодоксальной науки, а довольно откровенный отказ большинства ученых принимать всерьез подобные явления, раздраженно отмахиваясь от них, еще больше усиливают нападки оппонентов. Однако последние, очевидно, не в состоянии понять, как на самом деле трудны научные исследования, как сложно проверить даже очень простые на вид гипотезы и предположения и с каким количеством парадоксов и загадок мы сталкиваемся в повседневной научной работе; а ведь они не менее интересны и теоретически гораздо более важны, чем такие, возможно, малодоступные для проверки явления, как, скажем, экстрасенсорное восприятие.

Пока поэты и прорицатели беспокоятся о том, как бы привлечь внимание к аномальным феноменам, нарушающим правильное течение нашей повседневной жизни, естественные науки заняты дотошным и зачастую скучным изучением ее кажущейся монотонной упорядоченности. Нам она представляется по меньшей мере столь же интригующей и заслуживающей внимания, как знамения и чудеса, вызывающие столь навязчивую озабоченность мистиков, искателей веры и многих других лиц, далеких от науки.

Тем не менее я пытаюсь здесь спасти от снисходительного забвения давние эксперименты по переносу памяти не просто для того, чтобы отдать историческую справедливость ушедшему в прошлое этапу развития избранной мною области исследований, но и по трем другим гораздо более важным причинам. Прежде всего, нужно показать, как легко может ввести в заблуждение собственная риторика. В главе 4 отмечалось, что очень существенную роль в развитии науки играет аналогия или метафора: она может осветить лежавший впереди путь или завести в тупик. В данном случае аналогия была задана использованием слов «память» и «информация» в трех разных областях: наследственности, иммунологии и теории научения. Власть модных выражений, таких как информационные макромолекулы, и поиск сенсационных результатов для прессы и спонсоров нередко заставляли забывать об осторожности. В данном случае результатом оказалось «открытие» биохимических механизмов памяти, которые искали совсем не на том уровне - на уровне молекул, а не цельных систем мозга, которым принадлежат эти молекулы. Выбор нужного уровня при изучении того или иного феномена в биологии так же стратегически важен, как выбор подходящего организма или условий контрольного эксперимента; эти факторы в такой же степени влияют на исход исследования в наше время, как и двадцать лет назад.

Вторая причина не имеет столь негативного подтекста. Унгар проводил свои опыты еще до того, как другие исследования, позднее давшие начало новой важной ветви нейрофармакологии и выдвинувшие ряд выдающихся ученых, показали, какую важную роль играют многие пептиды в мозгу. Из них наиболее известны болеутоляющие морфиноподобные вещества из группы опиоиднъа пептидов, такие как энкефалины и эндорфины. В настоящее время открыты десятки таких мозговых пептидов, многие из которых близко родственны гормонам, действующим в других частях тела. Они функционируют как нейромедиаторы и как модуляторы нейронной активности (нейромодуляторы) и имеют отношение не только к боли, но и к удовольствию, стрессу, возбуждению, вниманию и ряду других душевных и телесных состояний общего характера. Поразительно (а может быть, в этом и нет ничего неожиданного), что мифический скотофобин Унгара по своему аминокислотному составу весьма напоминает энкефалины и эндорфины. Сам того не подозревая, Унгар столкнулся с совершенно новой возможностью познавать химические основы мозговых функций; однако он умер, так и не узнав о совсем опередившем время, но неверно истолкованном открытии.

Третий урок: мы теперь видим, как легко возникают артефакты при экспериментальном исследовании таких сложных явлений, как научение и память. Поскольку у животных память можно описать только в поведенческих понятиях, всегда есть опасность, что мы оцениваем тот или иной аспект поведения, а не памяти. В опытах с обучением животных подвергают стрессорным воздействиям или выдерживают голодными, они получают сенсорные сигналы и совершают определенные действия. Если мы регистрируем изменения белкового синтеза в условиях, скажем, коррелятивного эксперимента, как мы можем быть уверены, что это связано именно с процессами научения, а не с сопутствующим поведением? Если же мы проводим интервентивный эксперимент и впрыскиваем животному препарат, который лишает его способности «правильно» выполнять1 усвоенную ранее задачу, как можно удостовериться, что мы блокируем или нарушаем именно память, а не моторную или сенсорную активность, от которой зависит ее внешнее проявление? Вводимое вещество может ведь делать животных менее голодными, уменьшать их подвижность или чувствительность к электрическому удару.


*1) В дальнейшем я не стану брать слово «правильно» в кавычки, поскольку уже говорил, что мы интерпретируем поведение животного, пользуясь нашими критериями, которые не обязательно совпадают с его собственными.


Совсем непросто придумать эксперименты для проверки всех этих возможностей, что подтверждается оживленным обсуждением этой проблемы в научной литературе. Приведем еще один пример экспериментальных подходов, которые широко использовались в конце 60-х и начале 70-х годов. Предположим, что мышь обучают, помещая ее на небольшую полку в клетке с сетчатым полом, находящимся под током. Всякий раз, когда животное сходит с полки на пол, оно получает слабый электрический удар (это один, из малоприятных видов подкрепления, которые приходится использовать в экспериментальной психологии). После нескольких проб мышь приучается оставаться на полке. В соседней клетке помещают другую мышь, но здесь нет полки. Всякий раз, когда первая мышь получает электрическое раздражение, такому же воздействию подвергается и вторая мышь, однако из-за отсутствия полки она не может ничему научиться и поэтому служит хорошим контролем. Обе мыши получают одинаковое число электрических ударов, но одна обучается избегать их, а другая нет, так как ей некуда уйти; число ударов для нее целиком определяется поведением первой, обучающейся мыши. Следовательно, все различия между ними должны быть приписаны не ударам, а тому, что мышь в клетке с полкой обучается их избегать. Этот прием использовался во многих экспериментах, выявивших различия в биосинтезе белка у обученных и контрольных животных. На основании этих результатов был сделан вывод, что биохимический сдвиг был действительно обусловлен обучением, а не стрессом. Иногда в таких экспериментах используют третий, «спокойный» контроль, и часто у животных этой третьей группы тоже выявляются биохимические отличия от двух других групп - обученной и необученной [20].

Но постойте. Откуда известно, что контрольное животное ничему не обучается? Может быть, оно узнает, что удара нельзя избежать, и это знание очень существенно для его поведения в последующем [21]? Не будут ли различия между «спокойным» контролем и животным, не имеющим возможности избежать удара, результатом обучения или стресса? Или, возможно, обучающаяся мышь испытывает меньший стресс, чем не обучающаяся? Стресс, несомненно, влияет на уровень циркулирующих в крови гормонов, а также может изменять обмен веществ в мозгу. Поэтому даже при полной достоверности биохимических эффектов различия между ними у разных групп животных могут зависеть не только от того, имело ли место научение.

Сходные источники артефактов и ошибок существуют и при биохимических измерениях. Многие из них обусловлены весьма сложными биохимическими факторами, на которых я сейчас не буду останавливаться: достаточно будет сказать о двух. Я уже упоминал (глава 2), что скорость белкового синтеза можно определить, вводя в кровяное русло меченую аминокислоту и измеряя радиоактивность белков в тех или иных областях мозга спустя различные промежутки времени. Однако, прежде чем включиться в белок, радиоактивная аминокислота должна сначала перейти из кровяного русла в нейроны. Поэтому скорость ее включения может изменяться в зависимости от скорости кровотока и других физиологических параметров, которые, таким образом, будут влиять на скорость биосинтеза белка. Такая же неоднозначность возможна в экспериментах с ингибиторами белкового синтеза. Поскольку белки образуются из аминокислот, воздействие этих ингибиторов приводит к тому, что аминокислоты не включаются в белки, а накапливаются в клетке. Некоторые из них, будучи исходным материалом для построения белков, служат также мощными нейромедиаторами, и их избыток может нарушать нормальную электрическую активность нейронов. Поэтому ингибиторы белкового синтеза могли бы вызывать амнезию, обусловленную не дефицитом вновь синтезируемых белков, а повышением внутриклеточной концентрации аминокислот [22]1. В первом порыве энтузиазма по поводу «молекул памяти» многие исследователи забыли об осторожности, необходимой при оценке столь неоднозначных биохимических и поведенческих эффектов, что в конечном счете привело к дискредитации не только их собственных результатов, но и целого научного направления.


*1) Этот пример разносторонних последствий даже очень простого химического вмешательства в сложные биохимические процессы наглядно показывает несостоятельность рассуждений представителей фармацевтической промышленности о «побочном действии» лекарственных средств. Введение в организм экзогенного вещества приводит к разнообразным биологическим эффектам, частью предвидимым, а частью совершенно неожиданным, но их никак нельзя считать «побочными». Это неверный термин, маскирующий неизбежность таких последствий, которых исследователь или врач не желал или о которых не подумал. Ни одно лекарственное средство не может быть «волшебной пулей», попадающей только в одну мишень.


Начнем с начала

По мере того как на поверхность выплывали противоречия и артефакты ранних исследований, дутые научные репутации стали лопаться словно пузыри, а приток исследователей в новую науку прекратился и затем повернул вспять. В течение нескольких лет было очень непросто получить средства на исследования памяти; те из нас, кто сохранял верность избранному пути, оказывались в изоляции, и к их данным относились в лучшем случае с вежливым скептицизмом. И когда в начале восьмидесятых годов память снова стала модным объектом нейронаук, она явилась уже в новом обличье.

Примерно к тому времени относится моя статья под несколько провоцирующим, как я надеялся, заглавием: «Какой должна быть биохимия научения и памяти?» [23]. Мне казалось, что с проблемами памяти в какой-то мере соприкасаются все новые научные направления. Многие лаборатории с энтузиазмом включились в эту работу, используя разнообразные парадигмы научения, нередко напрямую заимствованные из экспериментальной психологии. Однако это не означает, что широко применяемые в психологии методы (как, например, выработка у крыс реакции нажатия на рычаг для получения корма в скиннеровской клетке) столь же пригодны и для изучения клеточных и биохимических процессов в организме. Иногда объем новой информации, приобретаемой животным в психологическом эксперименте, попросту недостаточен для того, чтобы можно было выявить сопутствующие биохимические изменения. Исследователям биохимии памяти требовались новые модельные системы, в которых изучаемые изменения были бы достаточно велики, чтобы их удавалось выявить, и в то же время было бы ясно, что это не простые артефакты. Известны случаи, когда люди переключались на другие проблемы, считая, что если какие-то биохимические изменения в мозгу действительно «кодируют» память, то они слишком малы для успешного обнаружения, а если они достаточно выражены, то скорее всего не имеют к памяти никакого отношения.

Вопрос о масштабах возможных биохимических изменений был (и даже сейчас остается) весьма серьезным. Физиологи и психологи всегда покорялись необходимости применять статистический анализ для оценки значимости своих результатов. Это не устраивает многих биологов биохимической ориентации, особенно молекулярных биологов, так как изучаемые ими явления нередко подчиняются принципу «всё или ничего» или по крайней мере столь значительны, что различия в экспериментальных условиях или воздействиях приводят к четким различиям в результатах. Если для демонстрации какого-то эффекта нужна статистика, утверждают они, то этот эффект может оказаться нереальным и уж во всяком случае не может быть значительным. Фрэнсис Крик совершенно определенно высказался по этому поводу на дискуссионном заседании Королевского общества в Лондоне в 1977 году, обсуждая доложенные мною данные о 15-20%-ных изменениях скорости белкового синтеза и ферментативной активности при импринтинге у цыплят и первом воздействии света на крыс [24]. Если изменения не превышают 100%, их следует игнорировать: значит, вы изучаете не ту систему или неправильно спланировали эксперимент, - настаивал Крик. Однако присутствовавших физиологов и психологов поразил тот факт, что простая тренировка на импринтинг или любая другая форма обучения вообще могла дать заметные изменения, и в поисках источников артефакта они подвергли наши эксперименты столь же строгому анализу, какой в свое время проводил я сам, пытаясь разобраться в опытах по «передаче памяти».

Независимо от величины наблюдаемых эффектов вставал еще один вопрос, очень важный в теоретическом плане: специфичны ли обнаруженные нами биохимические изменения для импринтинга у цыплят, т. е. действуют ли здесь какие-то особые механизмы, отличные от тех, что лежат в основе проявлений памяти у взрослых птиц или других животных? Или мы имеем дело с биохимическим механизмом, общим для всех видов научения? Психологи различают много форм памяти - процедурную и декларативную, эпизодическую и семантическую, «рабочую» и «справочную», - и следует ли ожидать, что для каждой из них имеется свой собственный биохимический механизм, или же во всех случаях происходят сходные изменения на биохимическом и клеточном уровнях? Существует ли универсальный клеточный механизм памяти у млекопитающих, позвоночных и даже всех животных вообще, или он специфичен для определенных групп организмов?

От ответа от эти вопросы будет зависеть, на каком уровне следует изучать память. Если ключевую роль здесь играют биохимические процессы, то можно ожидать, что каждый вид памяти связан с синтезом каких-то уникальных белков или иных молекул. А если принять другую точку зрения и считать память свойством мозга как системы, а не его отдельных клеточных или молекулярных компонентов, то память должна будет зависеть не от конкретных биохимических процессов, а от того, в каких именно клетках или синапсах происходят изменения, от локализации этих клеток в нервной системе и от их связей с другими клетками.

Вспомним о входной двери в подъезде дома с набором кнопок для звонков. В принципе возможны два способа устройства этой системы, позволяющих известить о приходе посетителя к жильцу той или иной квартиры: либо все звонки слышны во всех квартирах, но различны по звучанию, либо звук у всех звонков одинаков, но каждый из них раздается только в определенной квартире. В первой системе (звуки разные и слышны везде) «смысловое содержание» звонка заключено в его специфическом звучании, а во второй значение имеет не сам звонок, а способ проводки. Эти две возможности по сути дела иллюстрируют два возможных способа работы биохимического механизма памяти. По мнению тех, кто верит в «молекулы памяти», запоминаемая информация заключена как бы в звонке с уникальным звучанием; для тех же, кто считает память системным свойством мозга, звонок - это лишь часть (хотя и важная) всей системы, и чтобы понять смысл его звучания, надо не прислушиваться к звуку, а знать систему проводки.

Если правилен второй подход (а я верю в это, несмотря на весь свой биохимический энтузиазм), то изучаемые мною биохимические события скорее всего отражают общий обмен белков, в том числе мембранных, - часть того, что иногда называют «домашним хозяйством» клетки. (Часто это выражение употребляют с уничижительным оттенком, особенно биохимики-мужчины, которые, видимо, не считают домашнее хозяйство достаточно серьезным делом.) Память заключена в топографии (схеме связей) и динамике нейронной системы. Это означает, что клеточные механизмы запоминания, скажем, телефонного номера или правил вождения автомобиля существенно не различаются: просто в них участвуют разные клетки, по-разному связанные с другими частями мозга.

В начале восьмидесятых годов я думал, что, пока мы не получим более подробных ответов на все эти вопросы, будет трудно понять и сравнить многообразные и подчас противоречивые результаты, полученные в разных лабораториях. Какова их зависимость от небольших особенностей процедуры обучения или от вида используемых животных? Имеет ли смысл добавлять еще одну случайную крупицу знания ко все растущему списку феноменов памяти? Много ли мы имеем «подлинных» обобщений, не ограниченных определенным видом животных или используемым тестом, - обобщений, которые могли бы быть опорой при построении клеточного и биохимического «алфавита» памяти? Или эти попытки так же бесплодны, как погоня за блуждающими огнями?

Огромные достижения молекулярной биологии стали возможны потому, что научные коллективы, игравшие ведущую роль в программах экспериментальных исследований в 50-х и 60-х годах, сосредоточили свои усилия на одном простом организме - обычной кишечной палочке (Escherichia соli). Фрэнсис Крик заметил, даже не без доли серьезности, что все работы по молекулярной биологии и биохимии на любых других объектах следовало бы прекратить, пока не будет выяснено все относительно Е. соli (какой бы смысл ни вкладывался в слова «выяснено все»). Другие биологи, менее «молекулярные», возмущенно протестовали, заявляя, что то, что справедливо для E. соli, не обязательно справедливо для слона; что биология - наука не только о всеобщем, но и о специфическом; что многоклеточные организмы со сложным мозгом - это не просто агрегаты из 1015 (или около того) отдельных клеток; и, наконец, что свойства таких организмов могут определяться межклеточными отношениями, не присущими никакой из клеток в отдельности. Однако в самом деле, почему бы нейробиологам вообще и исследователям памяти в частности не сосредоточиться на небольшом числе модельных систем, относительно которых ни у кого не возникло бы возражений?1


*1) Когда многолетний ближайший сотрудник Фрэнсиса Крика в Кембриджском университете Сидни Бреннер вместе с другими молекулярными биологами того времени начал делать пробные шаги в сторону нейробиологии, он избрал путь, предложенный самим Криком: он направил практически всю работу своей лаборатории на изучение анатомии, развития и поведения одного из простейших организмов, имеющих нервную систему, - крошечной нематоды Caenorhabditis elegans. У этого червя длиной всего в полмиллиметра нервная система состоит из 302 нейронов, расположенных, как и у других червей, вокруг кишечника Благодаря быстрой смене поколений эти организмы, как и плодовые мушки, очень удобны для изучения мутаций, а ограниченный репертуар их поведения связан в основном с питанием, размножением и перемещением при помощи резких изгибов тела. Путем электронно-микроскопического исследования нормальных особей и особей с «поведенческими» мутациями Бреннер рассчитывал получить полные схемы нервных связей и выявить соответствие между этими связями и простыми формами поведения. Прошло уже больше пятнадцати лет с начала этих исследований, но до сих пор трудно сказать, насколько оправдались надежды ученых, хотя анатомия С. elegans изучена, вероятно, лучше, чем у любых других животных за всю историю науки, и они являются первыми организмами, у которых в девяностые годы была полностью расшифрована последовательность геномной ДНК. Начавшаяся восторженным провозглашением манифеста редукционизма, эта научная программа пока не принесла больших нейробиологических дивидендов в виде открытия универсальных механизмов вроде тех, что принесли исследования на Е. coli [25].


Совершенно очевидно, что научение - это сложный процесс, который включает разные аспекты мозговой деятельности и не может быть сведен к простой линейной последовательности событий. Стресс, возбуждение, двигательная активность и т. п., неизбежно связанные с научением, сами по себе приводят к биохимическим и физиологическим изменениям в мозгу и представляют самостоятельный интерес как объекты исследования. При анализе феноменов научения и памяти приходится также учитывать действие любых факторов, которые могут влиять на эффективность положительного или отрицательного подкрепления (чем меньше у вас голод, жажда или боязнь наказания, тем с меньшим усердием вы будете учиться тому, что сулит вам пищу, воду или надежду избежать электрического удара).

Как я уже отмечал в связи с интерпретацией опытов Унгара, возбуждение, вознаграждение и наказание ассоциируются с изменениями содержания в мозгу и кровяном русле опиоидных и других пептидов. Поэтому инъекции этих пептидов или взаимодействующих с ними веществ могут изменить поведение или проявления памяти. Следовательно, они могут влиять на процесс научения, хотя непосредственно не участвуют в его механизмах, - точно так же, как настройка тембра и громкость в магнитофоне влияют на качество записи и ее воспроизведения, но не имеют прямого отношения к содержанию того, что записано на магнитной ленте.

В настоящее время имеются препараты, введение которых перед обучением или сразу после него улучшает память (т. е. сохранение ее следов, см. главу 5): это видно из результатов испытаний спустя несколько часов или дней после обучения. Другие вещества ухудшают память. Открытие проактивного и ретроактивного воздействия на формирование следов памяти вызвало погоню за лекарственными средствами (при мощной поддержке фармацевтических фирм), которые могли бы облегчить процесс обучения и улучшить память, особенно у пожилых людей, страдающих болезнью Альцгеймера и другими расстройствами памяти (так называемые компенсационные средства1.


*1) Пионером этих исследований в Европе стал Давид де Вейд из Утрехта, сотрудничавший с фармацевтической компанией «Органон». Отрывочные и неоднозначные результаты его экспериментов получили теоретическое обоснование в работах Джима Мак-Гофа, работавшего в Ирвине (Калифорния), и Ивана Искьердо из Порту-Алегри (Бразилия) [26].


Стремление получить препараты, способные уменьшить тяжесть таких недугов, как болезнь Альцгеймера, заслуживает всяческого поощрения. Однако я весьма скептически отношусь к более смелым заявлениям пропагандистов компенсационных средств [27] о пользе их применения при столь широко распространенных явлениях, как «возрастное ослабление памяти». Я уже говорил в главе 5, что вообще сомневаюсь в существовании такого явления и в возможности получить лекарственные средства для борьбы с ним, если бы даже оно существовало. Одно дело ввести пептид животному, подвергнуть его испытанию в искусственных лабораторных условиях и показать, что он стимулирует научение и запоминание, и совсем другое - улучшить память человека, подсунув ему таблетку. Нельзя ожидать (отрешившись от идеи «молекул памяти»), что лекарственные препараты могут восстановить забытое, поскольку, как я уже говорил, оно сохраняется в мозгу не в форме особых молекул, а в виде множества специфических нейронных цепей. В лучшем случае все эти таблетки могут влиять лишь на самые общие процессы биохимического «домашнего хозяйства» клеток, необходимые для проявления памяти. Однако мозг является настолько тонко сбалансированной и динамичной системой с высокоэффективными механизмами самонастройки и контроля, что нарушение его биохимического равновесия в случае насыщения (в результате приема таблеток, влияющих на белковый синтез) отдельными медиаторами или нейромодуляторами, может привести к таким же последствиям, как попытка перенастроить радиоприемник или перепрограммировать компьютер, вставив отвертку между двумя элементами схемы.

Ясно одно: каким бы ни был лечебный эффект таких препаратов, они вряд ли могут помочь нам в понимании интимных механизмов памяти. В лучшем случае они будут полезны при изучении отдельных аспектов общего биохимического и гормонального состояния мозга, необходимого для формирования следов памяти, т. е. механизмов «настройки тембра и громкости», но не содержания «магнитофонной записи». По моему мнению, это ключевая научная проблема. Каким образом новая информация, приобретенная в процессе обучения, будет «представлена» в мозгу в форме перестроенных межнейронных связей и сможет впоследствии изменить поведение? Какие молекулярные процессы лежат в основе формирования этих связей? Возможно, что для образования следов памяти необходимы, помимо прочего, и изменения в секреции пептидов, однако этого недостаточно, и ввиду весьма общего характера таких изменений их нельзя считать специфичными для того или иного вида памяти. Именно поэтому я в моих экспериментах уделял сравнительно мало внимания такого рода веществам, и они не будут играть большой роли в последующих главах.

К концу семидесятых годов мне стало ясно, что любой клеточный или биохимический процесс, участвующий в формировании кода памяти, должен обладать особенностями, которые не могут быть изучены с помощью рассмотренных выше препаратов: он должен быть необходимым и достаточным для объяснения памяти. Оставалось неясным, можно ли достичь большего и показать, что какой-то процесс специфичен для данного следа памяти, т. е. представляет в мозгу именно эту и только эту информацию. Учитывая легкость постановки экспериментов, в которых обучение животных той или иной задаче приводит к выраженным биохимическим и клеточным изменениям в мозгу, я чувствовал необходимость выделения критериев, которые помогали бы судить, насколько то или иное изменение действительно необходимо, достаточно и специфично. Эта мысль выкристаллизовалась в бесчисленных долгих беседах, которые Пэт Бейтсон, Габриел Хорн и я вели, обсуждая наши опыты с импринтингом, и мы пытались найти способы ее практического воплощения при разработке контролей, которые использовали в начале семидесятых годов. Но в 1981 году я решил пойти дальше и установить набор критериев, которым должен был удовлетворять любой из предполагаемых биохимических или клеточных факторов формирования памяти. Обсуждение этих критериев связано с новым, более перспективным периодом в истории исследований памяти и, кроме того, служит поворотным пунктом в моей собственной научной биографии, когда я перешел от импринтинга к изучению еще более простой формы научения у цыплят. Все это послужит отправной точкой для следующей главы.


Глава 9

Морские улитки и гиппокамп: идеальные объекты?


Критерии соответствия

К 1980 году исследователи памяти уже достаточно хорошо разбирались, чему можно верить, а чему нет. Стало, например, ясно, что не существует уникальных молекул памяти. Сложилось общее мнение, что наиболее перспективна модель Доналда Хебба, в которой предполагалось изменение эффективности связей между нервными клетками, вероятно, в результате образования новых или роста существующих синапсов, и этим объяснялась перестройка функциональных отношений между нейронами. Модификации хеббовского типа, по-видимому, можно было бы выявлять нейрофизиологическими или биохимическими методами. Однако ни у кого не было уверенности, что какой-либо специфический биохимический процесс, кроме самого общего процесса белкового синтеза, можно однозначно связать с формированием следов памяти; ученые стали проявлять большую осторожность при оценке новых сообщений на эту тему. Что же такое в конце концов биохимия памяти и как проверить правильность предлагаемых ответов на этот вопрос? Иными словами, какой ответ был бы убедительным и для биохимиков, и для психологов? Каким требованиям должен отвечать эксперимент, чтобы изучаемый процесс можно было считать необходимым, достаточным и, быть может, даже специфичным для образования следов памяти?

На этот вопрос я попытался ответить в начале восьмидесятых годов [1]. К тому времени уже не составляло труда обнаружить биохимические изменения в мозгу обучавшегося животного; трудность заключалась в доказательстве того, что они действительно связаны с процессом запоминания. Я чувствовал, что не могу разумно планировать эксперименты, не имея критериев для оценки их результатов, а без этого я не знал бы, как двигаться дальше. Я решил, что любое изменение, которое можно будет рассматривать как часть следа памяти (энграммы), должно соответствовать критериям, описанным ниже1.


*1) Я несколько изменил формулировку этих критериев и порядок их обсуждения по сравнению с тем, как они были представлены в оригинальной статье, но это не затрагивает их сути. Я не хочу переписывать историю.


Первый критерий

Предполагаемый фактор (система, вещество, скорость его образования или обновления) в локализованном участке мозга должен претерпевать количественные изменения в процессе формирования следов памяти.

Если образуются новые или видоизменяются существующие синапсы, то в их химических или структурных компонентах должны появляться изменения, доступные для выявления биохимическими или микроскопическими методами (например, повышенное содержание синаптических мембранных белков, изменение размеров определенных синапсов или увеличение их числа). Однако если бы я выявил такое изменение в период обучения животного, но не убедился в его соответствии всем последующим критериям, я бы недалеко ушел от экспериментов шестидесятых годов, которые критиковал в предыдущей главе. То или иное изменение может быть действительно необходимым, но это еще не значит, что оно достаточно или специфично. Тем не менее первый критерий, безусловно, имеет фундаментальное значение для любой материалистической модели памяти. Он предполагает также условие локализации, т. е. изменения не могут быть распределены по всему мозгу - они должны быть сосредоточены в какой-то определенной области. Это, разумеется, возвращает нас к старому спору о возможности локализации энграмм (к этой теме я вернусь позднее; значительная часть двух последних глав будет посвящена вопросу о локализации памяти во времени и пространстве).

Обратите внимание, что первый критерий не включает таких условий, как направление и величина изменений. Вполне возможно представить себе «отрицательное» кодирование воспоминаний путем снижения уровня какого-то вещества или процесса, хотя на практике почти цсе исследователи пытаются выявить его повышение. А что же с величиной изменения?

Если что-то запомнилось вдвое лучше или вместо одного события или предмета запомнились два, значит ли это, что и изменение выражено вдвое сильнее? Совсем не обязательно, ибо в наших опытах мы измеряем память в условных единицах, которые сами же изобрели. При этом мы не можем знать, соответствуют ли наши масштабы тем, которыми пользуются сами животные, формируя следы памяти. Например, я могу обучить цыпленка не клевать горькую хромированную бусину, потом горькую красную и, наконец, горькую синюю бусину. Однако цыпленок не обязательно помнит их как три отдельных предмета. Скорее всего он вместо этого прибегает к иной, более рациональной стратегии, производя обобщение: «Все предметы определенного размера, независимо от цвета, имеют горький вкус, и их следует избегать». В этом случае он будет помнить один предмет, а не три.

Второй критерий

Изменение должно совпадать во времени с формированием следов памяти.

Очевидно, что следы образуются не мгновенно, словно нажатием кнопки, а на протяжении нескольких часов после запоминаемого события. В этот период изменяется форма сохранения следа. По крайней мере в случае декларативной памяти (глава 4) имеет место переход, занимающий несколько минут или часов, от первоначальной лабильной и кратковременной фазы к долговременной стабильной памяти.

Можно представить себе разные способы такого перехода (рис. 9.1). Одним из крайних вариантов может быть непрерывный процесс, в котором некая цепь биохимических реакций в определенной группе клеток неизбежно приводит от ранней, неустойчивой фазы к фиксированному конечному состоянию, как при затвердевании клея или проявлении фотоснимка. Другой вариант допускает возможность двух (или нескольких) более или менее независимых параллельных процессов, сопровождающихся изменениями электрических свойств и чувствительности какой-то группы нейронов, которые могут в первые минуты «кодировать» память, а затем постепенно отключаться. Между тем, если воспоминание достаточно важно, чтобы стоило сохранять его долгое время, могут потребоваться такие биохимические процессы, как реконструкция синапсов, которые будут постоянно представлять память в другой группе нейронов, возможно даже в другой части мозга. Эти два типа процессов - последовательная и параллельная обработка воспоминаний - служат, разумеется, крайними примерами; есть множество промежуточных вариантов [2], и становится все труднее планировать эксперименты, в которых можно было бы четко провести различие между ними.


rose91.gif

Рис. 9.1. Кратковременная и долговременная память. Две модели перехода от кратковременной памяти к долговременной. Вверху показан вариант с последовательным, линейным переходом от фазы к фазе. Внизу - вариант с двумя независимыми процессами. Первоначальная активация клеток служит сигналом как для запуска механизмов кратковременного запоминания, так и для образования и последующего укрепления долговременных энграмм. При блокировании второго из этих процессов воспоминание утрачивается по мере угасания кратковременных следов. Имеющиеся данные говорят скорее в пользу нижнего варианта.


Тем не менее весь опыт изучения человеческой памяти указывает именно на такое подразделение памяти на кратковременную и долговременную. Результаты исследований, проведенных на таких больных, как X. М., показывают, что гиппокамп, не участвуя в проявлениях долговременной памяти, все же играет важную роль в переходе от кратковременной к долговременной фиксации ее следов. Но как бы ни работал мозг - путем последовательной или параллельной обработки информации (в дальнейших главах этому будет уделено больше внимания) - в обоих случаях с памятью связаны определенные клеточные процессы, и мы не можем не пытаться дифференцировать их экспериментальным путем.

Третий критерий

Стресс, двигательная активность и другие процессы, сопровождающие научение, не должны приводить к структурным или биохимическим изменениям, если при этом не образуются следы памяти.

Теоретически этот критерий очевиден, но его очень трудно проверить на практике. Если обучение животного в эксперименте невозможно без стресса, двигательной активности и т. п., то возможны ли стресс, двигательная активность и другие процессы без научения? Имеет ли смысл попытка такого разделения, и можно ли представить себе такой вариант в высшей степени редукционистского эксперимента, который позволил бы осуществить такое разделение? Не гонимся ли мы за чем-то неосуществимым ни экспериментально, ни теоретически? Вправе ли я вообще ставить этот вопрос, учитывая, сколько энергии я потратил на критику редукционизма с теоретических позиций?

Но именно потому, что на протяжении последних двух десятилетий я потратил столько времени в попытках получить результаты, удовлетворяющие обсуждаемому критерию, нелишне повторить, что следование редукционистской методологии в стратегии исследований (т. е. стремление стабилизировать изучаемый мир, манипулируя лишь одной переменной и сохраняя остальные по возможности стабильными) - это обычно единственный способ постановки эксперимента, позволяющий сделать четкие выводы. Ошибки случаются, когда переоценивают значимость таких выводов, забывая об искусственно ограниченных условиях эксперимента и вместе с тем допуская, что в реальной жизни, за стенами лаборатории, могут действительно иметь место изменения одной переменной; что очень просто экстраполировать искусственные условия лабораторной изоляции на сложно переплетенные условия реального мира. Именно этот прием, посредством которого редукционистская методология превращается в редукционистскую философию, столь популярен среди молекулярных биологов и части генетиков, но, к счастью, значительно реже используется психологами или нейробиологами. (Именно психологи подвергли наибольшему сомнению теоретическую обоснованность моего третьего критерия.)

Если не считать искусственных ситуаций, переменные находятся в непрерывном взаимодействии, и это взаимодействие носит не просто аддитивный характер. Чаще всего приводят пример из области генетики: там долго бытовало весьма наивное представление, что физиологию и поведение организма (его фенотип) можно условно разделить на два компонента, один из которых зависит от генов, а другой от окружающей среды. Таким образом, считалось, что фенотип организма практически полностью определяется совокупностью этих двух, очевидно независимых, компонентов. На самом деле, разумеется, взаимодействие между генами и факторами окружающей среды в процессе развития носит далеко не линейный характер, и попытки разделить фенотип на генетический и средовой компоненты обречены на неудачу. Пэт Бейтсон находит здесь аналогию с выпечкой пирожного. Смешивают разнообразные компоненты - муку, молоко, масло, сахар, специи, яйца и т. д., а потом смесь подвергают тепловой обработке. Каждый из этих компонентов необходим, чтобы готовое изделие имело желаемый вкус, однако бессмысленно задаваться вопросом, в какой мере этот вкус будет зависеть от муки, от яиц, от времени и температуры выпечки: в процессе смешивания и нагревания произошли качественные изменения составляющих компонентов.

Упрощенные концепции аддитивного взаимодействия генов и факторов среды хотя и фигурируют еще в стандартных учебниках генетики (часто даже без упоминания о его значении для здоровья человека), на самом деле очень мало связаны с тем, что происходит в реальной жизни. То же относится к исследованиям памяти. Если нельзя показать, что животное обучилось, иначе как по изменению поведения, и это изменение можно вызвать только определенной формой стресса или принуждения, то сопутствующие обучению биохимические изменения должны включать также изменения в ответ на стресс, в том числе эффекты нейромодуляторов, обсуждавшиеся в предыдущей главе. Тем не менее в том искусственном мире, который создается в лаборатории, можно и должно выделять переменные величины, каким-то образом связанные с фактами реальной жизни. У нас нет иного способа узнать что-либо о выпечке пирожного, кроме наблюдения за тем, что происходит, если исключать из смеси отдельные компоненты, изменять температуру или время приготовления и т. д. ...

Четвертый критерий

Если клеточные или биохимические изменения ингибируются в период, когда должно было происходить формирование энграмм, то последнее блокируется и у животного возникает амнезия, и наоборот.

Очевидно, что это логическая необходимость, и она составляет основу вмешательства в процессы памяти при использовании ингибиторов белкового синтеза, о которых шла речь в предыдущей главе. Однако это все не так просто, поскольку на практике ни один из таких ингибиторов нельзя считать «волшебной пулей», попадающей в единственную мишень и не дающей так называемых «побочных эффектов»; поэтому результаты экспериментов с ингибиторами обычно не дают однозначных результатов. Последние слова, которые я добавил к формулировке данного критерия, это что-то вроде барочного росчерка. Допустим, животное тренируют на выполнение задачи, что в обычных условиях приводит к ее усвоению, но в данном эксперименте этого не происходит, так как научение каким-то способом блокируется. В этом случае изучаемый биохимический процесс, если он действительно специфически связан с образованием следов памяти, должен отсутствовать, когда отсутствует запоминание. Эксперименты, основанные на этом критерии, описаны в следующей главе.

Пятый критерий

Удаление участка, в котором происходят биохимические, клеточные или физиологические изменения, должно препятствовать образованию следов памяти (или вспоминанию) в зависимости от того, когда по отношению к времени тренировки произведено удаление.

Этот логический аналог двух предыдущих критериев тоже может казаться очевидным. Если изменения связей, формирующие след памяти, локализованы в отдельной небольшой группе клеток, а не распределены в мозгу диффузно, то удаление этих клеток приведет к исчезновению энграммы или помешает ее формированию. Поскольку в эксперименте довольно просто создать в мозгу небольшие локализованные «дырки», не вызывая общего поражения, нетрудно проверить справедливость утверждения, что какой-то участок является тем самым носителем энграммы, который определяет данное поведение. Если соответствующее повреждение приводит к амнезии или неспособности к обучению, это может подтвердить локализацию энграммы. Однако этот вывод отражает статичный и механистический взгляд на способ фиксации воспоминаний в мозгу. Если же процесс хранения следов более динамичен и в нем участвует много различных участков, такой эксперимент ничего не даст. Кроме того, игнорируется пластичность мозга (при удалении одного участка его функцию может принимать на себя другой участок); этот вопрос исследуется в экспериментах, описанных в главе 11. Наконец, никогда не следует забывать о свойственной всем травмирующим экспериментам двойственности: вспомним пример Ричарда Грегори с радиоприемником и подавляющим шумы транзистором.

Шестой критерий

При нейрофизиологической регистрации сигналов из мест изменения на клеточном уровне должны выявляться изменения в электрических ответах нейронов во время и (или) после формирования следов памяти.

Если верна гипотеза Хебба о хранении следов памяти в форме измененных синаптических связей, то обучение должно сопровождаться изменением электрической активности нейронов, соединенных изменившимися синапсами. Данная мною формулировка этого критерия предполагает, что начинать надо с поиска изменений на биохимическом и клеточном уровнях и уже на этой основе выявлять нейрофизиологические изменения, т. е. нейрофизиология в известном смысле рассматривается просто как побочный продукт биохимических и клеточных изменений. Разумеется, эта точка зрения отражает лишь мои личные склонности как не до конца перестроившегося нейро-химика. На практике нейрофизиология может с таким же успехом вести (а в таких важных случаях, как эксперименты на аплизии или изучение долговременной потенциации, и в самом деле вела) за собой биохимию и клеточную биологию, помогая находить клетки, чьи электрические, а значит, и биохимические свойства изменяются при научении. Я не имею в виду, что биохимия первична или в редукционистском смысле более фундаментальна, чем физиология; я утверждаю только, что измененная биохимия претворяется в измененную физиологию точно так же, как и в измененное поведение.

Эти шесть критериев формировали мои собственные исследования, начиная с восьмидесятых годов. Я пытался выявить биохимические, морфологические и физиологические изменения в отдельных областях мозга цыплят в период от нескольких минут до нескольких часов после тренировки в выполнении простой задачи с целью 1) показать, что эти изменения связаны именно с образованием следов памяти, а не с какими-либо побочными аспектами обучения; 2) показать, что блокада этих изменений предотвращает запоминание, и наоборот; а также 3) изучить последствия удаления изменяющихся участков мозга до и после обучения. Результаты использования этих критериев я опишу в двух последующих главах, единственными героями которых будут цыплята; а сейчас речь пойдет не о моих собственных экспериментах, а о важнейших работах других исследователей, проводившихся в последнее десятилетие.

Новые модели

Все точные критерии и четкие теории в мире ничего не значат без хороших экспериментальных модельных систем. В восьмидесятые годы по мере исчезновения прежних сомнений в правильном выборе изучаемых объектов и проводимых тестов ученые начали приходить к единому мнению, что лучше использовать небольшое число моделей, причем каждая группа исследователей отстаивала свою новую версию «идеального» организма. Правда, виды очень многообразны, и они обучаются самым разным вещам, совсем не похожим на те экспериментальные тесты, которыми пользовались первые поколения зоопсихологов. Эти психологи, однако, создали некоторый задел для своих последователей, видевших свое прямое призвание в разработке биохимии, нейрофизиологии и клеточной биологии научения и памяти. Те, кто работал с позвоночными, проявляли тенденцию уйти от прежних лабиринтов и скиннеровских клеток, чтобы заняться выработкой очень простых классических условных рефлексов (например, изменения частоты сердечных сокращений или моргания) у кроликов, у которых можно достаточно точно картировать нервные цепи.

Я уже попутно упоминал ряд других, более экзотических моделей. Например, в Иерусалиме Ядин Дудаи использовал поведенческие и биохимические мутации у плодовой мушки. Для него и некоторых других нейробиологов дрозофила стала таким же обычным объектом изучения, каким была в нашем столетии для генетиков. Доводы этих ученых основывались на том факте, что, как правило, любая специфическая точечная мутация приводит к изменению или отсутствию одного белка в развивающемся организме. Таким белком может быть, например, фермент или компонент мембраны. У мутанта, дефектного по признаку обучаемости или памяти, причиной дефекта может быть отсутствие специфического белка или нарушение его функции. Если установить, какой белок отсутствует, то можно получить ключ к расшифровке его роли в образовании энграмм. В этом смысле изучение мутаций несколько напоминает применение ингибиторов для блокирования определенных обменных процессов и обладает всеми достоинствами и недостатками последнего метода, которые я обсуждал в предыдущей главе и в разделе «Четвертый критерий». Исследования на дрозофилах не решили проблему памяти, но они, несомненно, содействовали пониманию ее биохимических механизмов. Одним из важнейших результатов этих работ явилась демонстрация сходства молекулярных процессов, лежащих в основе формирования следов памяти у плодовой мушки и у других, более крупных и обычных лабораторных животных. Эти результаты подтверждают существование подлинно универсальных биохимических основ нервной пластичности.

Другим очень популярным объектом для изучения памяти стали моллюски; о причинах этого говорилось в главе 7. Особенно важно наличие у них крупных нейронов и легко доступной для исследования нервной системы. Моделями могут служить несколько интересных видов наземных улиток, но наибольшей популярностью (если не у гастрономов, то у нейробиологов) пользуются гигантские морские слизни, такие как Hermissenda.

Однако два самых успешных и наиболее часто цитируемых модельных исследования 80-х годов были проведены на брюхоногом моллюске аплизии (клеточные механизмы кратковременного научения и аналогичных процессов) и на гип-покампе - особом участке в мозгу млекопитающих (феномен так называемой долговременной потенциации). Результатам этих экспериментов и посвящена оставшаяся часть главы.

Привыкание у аплизии - «обучение в блюдце»

Спросите любого специализирующегося в нейронауках выпускника университета, какой организм больше всего использовался в клеточной биологии научения, и вы скорее всего услышите в ответ: аплизия. А на вопрос об исследователе, сыгравшем ключевую роль в этой программе работ, вам почти наверняка назовут имя Эрика Кэндела, профессора Фонда Говарда Хьюза в Нью-Йоркском колледже терапевтов и хирургов, автора одного из самых известных в последнем десятилетии пособий по нейронаукам [3] и плодовитого соавтора других книг, блестящего и неутомимого пропагандиста аплизии как идеального объекта для изучения памяти и редукционизма как методологической и философской концепции ее познания (Кэндел был столь ярым приверженцем редукционизма как философии и одновременно методологии, что однажды выступил перед аудиторией психблогов с лекцией на тему «Психотерапия и отдельный синапс» [4]).

Кэндел, получивший образование как психиатр, в шестидесятые годы какое-то время работал с аплизиями в Париже вместе с Ладиславом Тауком и имел возможность оценить перспективность этого моллюска при изучении вначале таких кратковременных процессов, как привыкание. В последующую четверть века этот организм стал главным объектом его самостоятельных исследований в Нью-Йорке, где в возглавляемой им лаборатории Колумбийского университета выросло несколько поколений специалистов-нейробиологов. Несомненно, Кэндел и его школа внесли важный вклад в нейробиологию кратковременных проявлений памяти как в экспериментальном плане, так и в смысле повышения престижа того раздела физиологии, к которому после его упадка в шестияесятые годы многие относились весьма сдержанно. Далеко не просто складывались личные отношения между учеными, работавшими с аплизией, и между всей этой группой и другими группами,, которые использовали иные модели, в частности с Дэном Элконом и его коллегами по работе с Hermissenda в Вудс-Хоуле (см. главу 7). Одно время трения стали столь заметными, что побудили автора научно-популярных работ Сюзан Олпорт посвятить им отдельную книгу [5]. Тем не менее общее направление исследований Кэндела и теоретические предпосылки, разработанные им в 70-х и 80-х годах, до недавнего времени не встречали особых возражений. Однако результаты, полученные в последние несколько лет в его собственной и в других лабораториях, побуждают расширить прежний несколько упрощенный редукционистский подход к интерпретации получаемых данных. Чтобы дать представление о существе этой критики, мне придется сначала рассмотреть редукционистскую концепцию Кэндела в ее наиболее выраженной форме.

В главе 7 уже говорилось, почему исследования на аплизии приобрели стратегическое значение для нейробиологии некоторых важных форм памяти. У этого животного очень несложный поведенческий репертуар, включающий различные виды научения, а их центральную нервную систему сравнительно нетрудно картировать, так как она состоит не более чем из 20 000 нейронов, сгруппированных в ряд обособленных ганглиев, и среди этих нейронов есть очень крупные клетки, легко распознаваемые индивидуально у всех особей. Ключевым моментом в подходе Кэндела было изучение простейших поведенческих реакций у интактного животного. Речь идет об элементарном рефлексе - втягивании жабры и сифона - с явлениями привыкания и сенситизации. Эту форму поведения или ее нервный механизм можно «отделить» от других поведенческих реакций путем последовательного уменьшения группы изучаемых в эксперименте нейронов. Предельным случаем будет наблюдение над двумя определенными нейронами, которые можно отпрепарировать, а затем вызвать образование синаптической связи в лабораторной чашке. По мнению Кэндела, взаимодействие таких нейронов и их реакции на добавляемые извне нейромедиаторы можно считать моделью памяти для рефлекса в ее крайне редуцированной форме. Каковы же доводы в пользу этого?

Рассмотрим сначала сам рефлекс. Аплизия дышит с помощью жабры, которая размещается в полости на верхней (дорсальной) стороне тела. В задней части этой полости имеется вырост в виде трубки - сифон. Если прикоснуться к области вокруг жабры или сифона, они втягиваются в полость: это простой защитный рефлекс. Нервный механизм такого рефлекса включает небольшое число (около 50) сенсорных нейронов, реагирующих на тактильное раздражение упомянутой области. Эти сенсорные нейроны контактируют примерно с 20 моторными нейронами как непосредственно, так и через промежуточные нейроны (интернейроны). Моторные нейроны расположены в абдоминальном (брюшном) ганглии и в свою очередь образуют синапсы на мышечных волокнах, втягивающих сифон и жабру. Эта относительно простая цепь схематически показана на рис. 9.2. Однократное раздражение поверхности тела около жабры или сифона приводит к их втягиванию, а при многократной стимуляции наступает привыкание; реакция на повторные стимулы постепенно ослабевает вплоть до ее полного исчезновения на некоторое время. Привыкание можно снять (дегабитуация, или сенситизация) сильным раздражением другого участка тела, например «хвоста», что приводит к полному восстановлению первоначальной реакции. Такие изменения рефлекса носят кратковременный и довольно неспецифический характер, и их следует рассматривать как формы неассоциативного научения. Наряду с этим, как показал Кэндел, возможна и выработка классического условного рефлекса, когда безусловным стимулом служит резкое воздействие на хвостовую область, а условным - слабое тактильное раздражение сифона. Слабая стимуляция обычно приводит и к слабо выраженному втягиванию сифона, тогда как после закрепления условного рефлекса такое же слабое раздражение вызывает сильную реакцию. Этот эффект сохраняется довольно долго, и поскольку здесь существует специфическая связь между стимулом и реакцией, его можно считать формой истинного ассоциативного научения.


rose92a.gif

Рис. 9.2а. Рефлекс втягивания жабры и сифона у аплизии. Показано интактное животное. На сифон через трубку направлена струя воды (слева), это приводит к втягиванию сифона и фабры (в середине и справа).


rose92b.gif

Рис. 9.2b. Схема нервных связей в «редуцированном» препарате.


Кэндел и его сотрудники занялись поисками нервных путей, участвующих в реакции втягивания жабры и сифона. Они использовали простые классические методы нейрофизиологии, а дальнейшая стратегия состояла в последовательном уменьшении числа нейронов. Для более точного контроля и количественной оценки реакции моллюсков обездвиживали, прикрепляя к пластинке, а для стандартизации тактильных стимулов применяли струю воды, направляемую через остроконечную трубку. Сокращения жабры можно было также прямо регистрировать с помощью фотоэлемента. Выявив нервную сеть, которая обеспечивала рефлекторную реакцию, исследователи смогли перейти ко второму вопросу: какая часть этой сети ответственна за привыкание? Не происходят ли при этом изменения в каких-то определенных клетках или синапсах? Этот вопрос, очевидно, имеет отношение к описанному выше первому критерию. Но, поскольку группа Кэндела состояла из нейрофизиологов, а не биохимиков, исследователи начали с изучения электрических свойств клеток, что соответствует моему шестому критерию.

Однако для получения ответа требовалось еще одно упрощение изучаемой системы, в результате которого живые аплизии превращались в неактивные, удобные для манипуляций «препараты». Животное можно вскрыть, обнажив абдоминальный ганглий, или даже полностью изолировать этот ганглий вместе с нервами, участком кожи и жаброй. Проведя такую операцию, Кэндел мог считать, что исключил все посторонние источники сигналов - другие периферические нервы, нейро-модуляторы, циркулирующие в крови и т. п. При этом он получил возможность выявлять крупные клеточные тела моторных нейронов и, как говорилось в главе 7, повторно идентифицировать «те же самые» клетки при смене одного животного другим (рис. 9.2). В результате операции живой моллюск становился чем-то вроде компьютерной схемы, и ученые могли исследовать ее свойства как электротехники, получившие новое оборудование и пытающиеся понять принципы его работы. В такой системе осязательный стимул для поведенческих реакций можно заменить его нейрофизиологическим аналогом, т. е. прямым электрическим раздражением нервов, идущих к сенсорным нейронам. Точно так же и мышечную реакцию - втягивание жабры и сифона - можно вызывать прямой стимуляцией нервов, отходящих от моторных нейронов к жаберной мускулатуре.

На следующем этапе работы изолированные и «упрощенные» препараты использовались для того, чтобы выяснить локализацию механизмов привыкания, т. е. найти те звенья нервной цепи, которые начинают слабее отвечать на повторное раздражение. К середине семидесятых годов стало ясно, что ни подходящие к сенсорным нейронам, ни отходящие от двигательных нейронов нервы не обладают свойствами, позволяющими объяснить привыкание, так как их электрические ответы не уменьшаются. Следовательно, клетки, ответственные за привыкание, должны занимать промежуточное положение в сенсорно-моторной цепи абдоминального ганглия. И действительно, регистрация электрических сигналов от моторных нейронов в этом ганглии в период привыкания выявила постепенное уменьшение их частоты. Из этого был сделан вывод, что «место» привыкания лежит между сенсорными и моторными нейронами [6].

Однако даже в таком крайне упрощенном препарате имеется множество нервных цепей и многие тысячи клеток. Сенсорные нейроны, например, имеют прямые и опосредованные связи с моторными нейронами. Прямые связи обеспечиваются синапсами между аксоном сенсорного нейрона и дендритом или телом моторного нейрона (моносинаптический путь); в непрямом, полисинаптическом пути сначала сенсорный нейрон устанавливает синаптическую связь с интернейроном, а тот в свою очередь образует синапс с моторным нейроном. (Здесь следует ввести еще два соотносящиеся друг с другом термина. Когда одна клетка воздействует на другую непосредственно путем модификации синапса, образуемого ею на второй клетке, говорят о гомосинаптическом эффекте; если же действие одной клетки на другую модулируется третьей клеткой, имеющей синапсы с двумя первыми, такой эффект называют гетеросинаптическим.)

Анализ активности моторных нейронов аплизии после сенсорной стимуляции показывает, что они реагируют как непосредственно, т. е. моносинаптически, так и полисинаптически, через посредство интернейронов. На просьбу указать наиболее вероятное место синаптической пластичности теоретики скорее всего выберут интернейроны, поскольку они, очевидно, могут получать и модулировать сигналы, поступающие по множеству различных входов, прежде чем направить их по различным выходным путям. Простая модель научения, предложенная Хеббом и представленная на рис. 6.1, требует участия трех нейронов. Иными словами, если она верна, то предполагает гетеросинаптическое взаимодействие. Однако, к удивлению многих, в начале восьмидесятых годов группа Кэндела показала, что элемент, ответственный за привыкание, чрезвычайно прост: это прямая синаптическая связь между сенсорным и моторным нейронами; в частном случае - синапс между сенсорным нейроном и одним определенным очень крупным моторным нейроном, причем связь здесь моносинаптическая с модуляцией гомосинаптического типа.

Постепенное упрощение препарата до изолированной нервной цепи подготовило почву для его предельной редукции: сотрудник Кэндела Самюэл Шахер выделил два специфических нейрона - сенсорный и двигательный - и поместил их вместе в чашку Петри, т. е. перенес в условия тканевой культуры. Уже давно известно, что в этих условиях нейроны, подобно другим клеткам, много дней и даже недель остаются живыми, если поддерживать нужную температуру, аэрировать среду и снабжать клетки глюкозой и другими необходимыми веществами. При этом многие виды культивируемых клеток продолжают делиться, а нейроны хотя и не делятся, но растут и образуют аксоны, дендриты и даже синаптические соединения. В культурах Шахера сенсорные нейроны формировали синапсы на моторных нейронах, и их электростимуляция вызывала электрическую реакцию последних. При многократном раздражении сенсорной клетки ответ моторного нейрона постепенно затухал, т. е. развивалось привыкание [7]. В конце концов в лаборатории Кэндела было получено то, что он описал как изолированный синапс, «обучающийся в блюдце». Фактически это был полный триумф редукционистской стратегии, которой следовала группа Кэндела. Это, казалось, оправдывало его претензию на постановку такой цели, как расшифровка «клеточного алфавита» научения. Сенсорно-моторный синапс, безусловно, может считаться одной из букв такого алфавита.

Все, о чем шла речь до сих пор, относится в основном к области нейрофизиологии. А что можно сказать о биохимических механизмах реакций на изученных Кэнделом уровнях клеточной организации? Если привыкание происходит вследствие ослабления постсинаптической реакции в отдельном синапсе, то по логике вещей оно должно быть результатом либо пресинаптического, либо постсинаптического процесса или, разумеется, их сочетания. Например, может постепенно уменьшаться количество нейромедиатора, выделяемое пресинаптической клеткой, или происходить изменение рецепторов на постсинаптической стороне, так что они будут слабее реагировать на прежние дозы медиатора; возможно и одновременное участие обоих механизмов. Вопрос об относительной роли пре- и постсинаптической пластичности в последние годы стал одним из важных предметов спора, но большинство теоретиков склонно было приписывать пластичность в основном постсинаптической стороне.

Первой задачей нейрохимического исследования для группы, работавшей с аплизией, стала идентификация медиатора, передающего сигналы в синапсе. Им оказалось широко распространенное вещество серотонин, или 5-гидрокситриптамин. К середине семидесятых годов сотрудники группы установили, что в период привыкания в изолированном ганглии происходит неуклонное снижение секреции серотонина пресинаптическими окончаниями сенсорных клеток, тогда как чувствительность постсинаптических рецепторов этого вещества не изменяется. Пониженная секреция серотонина сопровождалась также изменением свойств пресинаптической мембраны, в особенности уменьшением трансмембранного переноса кальция внутрь клетки (биохимическое значение этого станет понятным позже). В параллельных экспериментах было показано, что сенситизация (т. е. эффект, в известном смысле противоположный привыканию; см. главы 6 и 7) тоже связана с пресинаптическими процессами, но здесь уже необходимо усиление секреции серотонина и притока кальция в клетки. Тот факт, что оба процесса - и привыкание, и сенситизация - происходят с участием пресинаптических механизмов, оказался довольно неожиданным для тех, кто моделирует нервные функции.

Десятилетие спустя были проведены аналогичные эксперименты на клетках в культуре, и они дали те же результаты. На этот раз для «обучения» не требовалось даже двух клеток, реакция полностью воспроизводилась при воздействии серотонином на изолированный моторный нейрон. Дальнейшее упрощение трудно придумать!

В следующей главе я гораздо подробнее остановлюсь на биохимии этих процессов в контексте моих собственных экспериментов. Сейчас я не буду вдаваться в детали, а хочу лишь подчеркнуть то, что Кэндел объясняет рефлекс, привыкание и сенситизацию, переходя к все более простым системам. Сначала он сводит сложную форму поведения интактного организма - втягивание сифона и жабры - к реакции нервной цепи, в которой в результате взаимодействия всего лишь двух клеток развивается привыкание, а потом интерпретирует электрическую (т. е. физиологическую) реакцию синапсов как каскад биохимических процессов в пресинаптическом нейроне.

Долговременная память аплизии

Если открытые Кэнделом механизмы процессов привыкания и сенситизации могут служить моделью кратковременной памяти, то какое отношение они могут иметь к долговременной памяти? Группе, работавшей с аплизией, нужно было найти у их излюбленного объекта такой процесс, который определенно можно было бы назвать долговременной памятью и попытаться изучить наподобие того, как это было с успехом сделано в случае привыкания и сенситизации. Этим объясняется повышенное внимание, которое в начале 80-х годов уделялось условнорефлекторному втягиванию сифона и жабры. Животное обучали реагировать на слабый стимул, обычно не вызывающий этой реакции, таким же образом, как на сильный, который ее уже вызывает (например, на резкое раздражение хвостовой области). Экспериментальный подход был усовершенствован в 1983 году сотрудником КэнделД Томом Кэрью [8], которому удалось смоделировать аналогичную ситуацию на «упрощенном» препарате. Безусловный раздражитель был заменен повторной активацией сенсорного нейрона, а условный - воздействием на клетку серотонина.

Ключевым признаком ассоциативного научения (в отличие от привыкания и сенситизации) служит его долговременный характер, тогда как все рассмотренные до сих пор эффекты были кратковременными. Согласно моему второму критерию, при ассоциативном научении у аплизии должны возникать более стойкие клеточные изменения, соответствующие длительной модификации поведения. Хотя еще в начале 70-х годов было показано, что ингибиторы белкового синтеза не влияют на привыкание и сенситизацию, Кэндел только в середине 80-х годов переключил свое внимание на более долговременные клеточные процессы. Хотя введение этих ингибиторов не сказывается на привыкании, они вызывают амнезию в опытах с ассоциативным научением. Поэтому последнее нельзя осуществить путем кратковременного изменения секреции медиатора; для этого необходим синтез новых белков, и исследователям нужно было идентифицировать их и выяснить их функции в клетке. В связи этим Кэндел предпринял эксперименты вроде тех, которые уже пытались провести исследователи биохимии памяти. Биохимики добавляли в культуру изолированных ганглиев или клеток радиоактивные предшественники белка и старались выявить образующиеся белковые продукты; те из них, синтез которых начинался или усиливался только при формировании следов памяти, отделяли от множества неспецифических белков. Одновременно обсуждался вопрос, каким образом кратковременные изменения в секреции таких нейромедиаторов, как серотонин, или в транспорте кальция через синаптическую мембрану могут запускать специфический синтез новых белков, необходимых для долговременного запоминания [9].


rose93.gif

Рис. 9.3. Схема нервного аппарата классического обусловливания у аплазии. (Один кружок может представлять группу нейронов.) Безусловный раздражитель (резкое воздействие на хвостовую область) возбуждает облегчающие интернейроны, имеющие выходные синапсы на окончаниях аксонов двух других путей: от мантии и от сифона. Одновременное слабое воздействие на мантию (условный раздражитель) и сильное - на хвостовую область усиливает передачу сигнала от мантии, вследствие чего даже слабое раздражение последней вызывает теперь втягивание жабры; слабое раздражение сифона остается неусиленным и не вызывает реакции втягивания.


Клеточные алфавиты или нервная система?

Поскольку все эти проблемы долговременной памяти у моллюсков смыкаются с биохимической проблематикой моих собственных исследований на цыплятах, я намерен на время отложить их обсуждение. Сначала нужно будет заняться теми вопросами, которые с редукционистской прямолинейностью игнорировались в ортодоксальных работах на аплизии (во всяком случае подход здесь был ортодоксальным в середине 80-х годов, хотя сейчас, похоже, он становится все более гибким). Хотелось бы, чтобы мои критические замечания были поняты правильно. В последние двадцать лет группа Кэндела внесла большой теоретический и экспериментальный вклад в изучение клеточных механизмов памяти, но интеллектуальная самоуверенность коллектива в целом и авторитет его руководителя стали приводить к замалчиванию некоторых аспектов всей этой работы и оттеснению тех, кто пытался привлечь к ним внимание. Я не собираюсь переходить на личности и вдаваться в вопросы приоритета, тем более что Сьюзан Олпорт уже вынесла кое-что на публичное обсуждение в книге «Исследователи черного ящика». Вместо этого я попытаюсь сосредоточиться на некоторых спорных теоретических вопросах.

Кое-кто из недовольных амбициозностью кэнделовской метафоры «клеточного алфавита» ссылается на якобы разную природу научения у беспозвоночных (аплизии) и у позвоночных. Нервная система аплизии состоит из относительно небольшого числа нейронов, однако среди них есть очень крупные. Этим она сильно отличается от мозга позвоночных, который содержит множество мелких нейронов с чрезвычайно большим количеством связей между ними. Поэтому одно из главных различий в устройстве мозга позвоночных и беспозвоночных иногда видят в том, что у последних на отдельный нейрон или даже синапс ложится гораздо больше работы и ответственности, чем у позвоночных, у которых они распределены между разными клетками. Возможно, так оно и есть, но в последние годы нейрофизиологи-беспозвоночники (те, что изучают беспозвоночных, а не особая группа исследователей, лишенных спинного хребта!), обычно утверждавшие, что излюбленные ими организмы имеют простую нервную систему, несколько изменили формулировку: они говорят теперь о «простых» нервных системах, намеренно употребляя кавычки в знак признания того, что эти системы все же на много порядков сложнее, чем действительно простые компьютерные схемы. У многих беспозвоночных, например у насекомых, нервная система набита крошечными нейронами. Это относится и к таким моллюскам, как осьминоги и кальмары с их крупным мозгом. Аплизия представляет случай особого рода, ибо это животное легко изучать, но, очевидно, можно без большой натяжки утверждать, что фундаментальные механизмы научения не слишком отличаются у нее от свойственных другим беспозвоночным животным и даже позвоночным с сопоставимыми размерами нервной системы. Синаптические взаимодействия даже 20 000 нейронов достаточно многообразны, чтобы они работали как целостная система, а не отдельные клетки, и некогда популярные утверждения, что в нервной системе насекомых и ракообразных можно найти ключевые «командные» нейроны, оказались столь же несостоятельными, как и пропагандировавшиеся с равным энтузиазмом «командные экономические методы» в Восточной Европе. Иными словами, этот подход так же мало пригоден для организации индивидуального поведения, как и для управления страной.

Другое направление критики представляют некоторые психологи, концентрирующие огонь на вопросе о том, насколько экспериментальная процедура ассоциативного обучения аплизии «действительно» отвечает требованиям классического обусловливания [10]. Однако все эти перебранки по поводу терминологии сейчас интересуют меня гораздо меньше других вопросов, которые я здесь рассмотрю, исходя из критериев необходимости, достаточности и специфичности. Несмотря на поразительную аналогию между процессами привыкания и сенситизации у интактных аплизии и реакциями изолированного сенсорно-моторного синапса - аналогию, вполне удовлетворяющую некоторым из моих критериев, здесь имеется явный логический пробел. Хотя изменения на уровне этого синапса в процессе привыкания при рефлекторном втягивании жабры и сифона действительно происходили, до сих пор формально не доказаны их необходимостьи достаточность. Говоря об упрощениях, производившихся группой Кэндела, я уже отмечал, что они устраняли ряд «неудобных» в экспериментальном и теоретическом плане процессов, сопутствующих поведенческой реакции (например, влияние периферической нервной системы и некоторые полисинаптические воздействия на моторные нейроны). Возможны ли привыкание, сенситизация и ассоциативное научение в случае повреждения ключевых сенсорно-моторных синапсов (пятый критерий)? И только ли эти специфические синапсы изменяются при процессах кратковременного и долговременного научения?

Один из самых упорных критиков Кэндела, нейрофизиолог Кэн Луковяк из Калгари, указывает, что причинная связь между нервной и поведенческой реакциями, постулированная Кэнделом, никогда не подвергалась прямой проверке на интакгных животных. Так, например, если сила реакции целиком зависит от отдельного синапса, у интактного животного должна выявляться высокая положительная корреляция между степенью активации специфического моторного нейрона и выраженностью рефлекса втягивания. Попытка обнаружить такую корреляцию Луковяку не удалась. Создавалось впечатление, что силу рефлекса контролирует не какая-то отдельная клетка абдоминального ганглия, а весь комплекс взаимодействующих клеток как система [11].

Подтверждение этого вывода пришло не от оппонентов, а от самих членов группы Кэндела. В частности, морфологи Мэри Чен и Крейг Бэйли потратили несколько лет на изучение и измерение синапсов абдоминального ганглия аплизии. Они обнаружили, что при ассоциативном научении происходят характерные изменения формы и числа этих синапсов (весьма сходные с наблюдавшимися нами у цыплят, я более подробно опишу их в следующей главе). Некоторые из этих изменений носят кратковременный характер, а другие (особенно увеличение числа синапсов), по-видимому, более стойки. Если это действительно так, если создание устойчивой простой ассоциации связано с образованием множества новых синапсов, то нельзя утверждать, что память «представлена» единственным набором синапсов на определенном моторном нейроне; в этот процесс должны быть вовлечены тысячи синапсов, распределенных между многими клетками [12]. Окончательную точку в этом споре поставил Том Кэрью, который сейчас работает в Йельском университете. Он изучал ход развития аплизии от крошечной свободноплавающей личинки через ряд промежуточных стадий до взрослой особи и, в частности, картировал формирование нервной системы и поведения у этого животного. По его наблюдениям, привыкание появляется на относительно ранней стадии, а сенситизация - намного позже. В нервной системе совсем юных аплизии сравнительно мало нейронов, тогда как начальный период проявления сенситизации совпадает со временем резкого увеличения их числа. Но если для сенситизации требуется лишь описанная ранее простая реакция комплекса из трех нейронов, то трудно понять, почему - в отличие от привыкания - она должна зависеть от такого роста популяции нервных клеток [13].

Я уделил здесь время рассказу об аплизии не только ввиду важности достижений Эрика Кэндела в плане накопления экспериментального материала и разработки теоретических моделей, но прежде всего в связи с тем местом, которое они заняли в учебниках и руководствах, сделав нейрофизиологию памяти полноправной наукой и сформировав целое направление исследований. Несмотря на ряд важных различий в результатах, полученных на Apfysia и на Hermissenda, и в их интерпретации соответствующими научными школами [14], обе группы внесли вклад в это направление, руководствуясь общей теоретической задачей, которая ведет к четкой, но, мне кажется, в конечном счете ошибочной редукционистской философии и стратегии поиска механизмов памяти. Конечно, ни один творчески мыслящий ученый не станет упрямо придерживаться устоявшихся взглядов перед лицом новых фактов, но только сам Кэндел может сказать, как далеко он отошел от своих ранних крайне редукционистских убеждений. Теперь пора перейти к рассказу о той экспериментальной системе, которая в последнее десятилетие стала (и до сих пор остается), вероятно, единственной по-настоящему популярной в нашей науке моделью научения.

Долговременная потенциация

В шестидесятых годах в нейрофизиологической литературе стали появляться отдельные сообщения о том, что многократная, производимая с достаточной частотой стимуляция нервных путей к некоторым областям коры головного мозга приводит к длительному усилению спонтанной электрической активности таких областей. Это явление - в сущности, повышение эффективности передачи между пре- и постсинаптическими клетками - получило название потенциации. Не может ли такая потенциация быть одной из форм нейрофизиологической памяти? В 1973 году в очень часто цитируемой теперь статье Тим Блисс из Национального института медицинских исследований в Лондоне и Терье Лёмо описали совместную работу, проведенную ими в лаборатории Пера Андерсена в Осло. Они обнажали у наркотизированных кроликов гиппокамп и идущие к нему нервные пути и подводили к одному из этих путей - «перфорантному» (perforant) - стимулирующие электроды, а регистрирующие электроды вводили в ту область гиппокампа, где перфорантный путь образует синапсы (в зубчатую извилину, рис. 9.4). Когда они после этого стимулировали перфорантный путь залпом электрических импульсов частотой 10-100 в секунду и длительностью до 10 секунд, наблюдалось необычайно продолжительное (до 10 часов) усиление активности нейронов зубчатой извилины гиппокампа [15]. Авторы назвали этот феномен долговременной потенциацией (сокращенно ДВП). На самом деле ДВП длится гораздо дольше десяти часов; этот эффект наблюдали и у наркотизированных животных с вживленными электродами, причем в этом случае потенциация сохранялась иногда на протяжении 16 недель после первоначальной кратковременной стимуляции. По-видимому, краткая электрическая стимуляция гиппокампа приводила к изменению электрических свойств его клеток.

Блисс, Лемо, Андерсен и многие другие нейробиологи сразу же заинтересовались этим явлением. Это был сильно выраженный эффект - специфический, воспроизводимый и, сверх того, поддававшийся физиологическому, а позднее также биохимическому, фармакологическому и морфологическому исследованию. Гиппокамп млекопитающих был уже хорошо известной структурой, его нервные связи, входные и выходные нервные пути подробно картированы и легко распознаваемы на различных препаратах, хотя индивидуальные нейроны не поддавались такой прямой идентификации, как у аплизии.

Продолжительное изменение выходной клеточной реакции на определенное входное воздействие служит по меньшей мере ярким примером нервной пластичности; больше того, весьма специфичная форма, которую приобретает реакция, может рассматриваться как проявление памяти. Было уже достаточно хорошо известно, что и у человека, и у других млекопитающих гиппокамп имеет какое-то отношение к памяти. Не может ли долговременная потенциация (ДВП) служить механизмом образования энграмм? Не могут ли физиологи использовать ее хотя бы как модель для изучения памяти? Блисс и Лемо явно склонялись к этому, считая свою процедуру стимуляции аналогом «условного раздражения»; однако они заключили свою статью загадочной оговоркой: «Другое дело - использует ли интактное животное в реальной жизни то свойство, которое было выявлено путем синхронной повторной стимуляции группы нервных волокон, нормальная активность которых неизвестна» [15].

ДВП легко вызывать и изучать классическими методами нейрофизиологии, поэтому вряд ли стоит удивляться ее популярности в качестве потенциальной модели памяти. В ближайшие годы после первых наблюдений Блисс в Лондоне, Андерсен в Осло и все большее число исследователей в других лабораториях стали в мельчайших подробностях изучать физиологию ДВП. Было показано, что этот феномен выявляется не только у наркотизированных и ненаркотизированных кроликов, крыс и других лабораторных животных, но и в препаратах in vitro.

Гиппокамп легко извлечь из мозга вместе с его входными нервными путями, в том числе и перфорантным путем. Благодаря трехмерной структуре гиппокампа можно получать тонкие срезы с интактными путями к клеткам того же среза, как показано на рис. 9.4. Такие срезы культивировали in vitro и изучали их электрические свойства. Так забытая с пятидесятых годов методика Мак-Илвейна снова вошла в моду у нейробиологов в конце семидесятых годов. Надлежащая стимуляция нервных путей в таких срезах тоже приводила к ДВП, которая сохранялась до отмирания среза.


rose94.gif

Рис 9.4. Гиппокамп крысы. На увеличенном изображении представлен срез гиппокампа с зубчатой извилиной (DG) и перфорантным нервным путем (РР) Другие области, где имеет место ДВП, включают СА1 и САЗ


Характеристики ДВП примерно одинаковы и в срезах, и в интактном мозгу. Во-первых, в обоих случаях реакция специфична для определенных путей. Иными словами, она развивается только в тех клетках, к которым подводится «условный раздражитель», а не распространяется от клетки к клетке, т. е. это результат функционирования сети специфических связей, а не волна диффузной активности. Такую специфичность можно изящно продемонстрировать благодаря наличию нескольких различных подводящих путей к отдельным участкам даже в одном срезе гиппокампа. Во-вторых, для индукции ДВП требуется повторное воздействие достаточно частых импульсов: то же число импульсов, поступающих с меньшей частотой, не вызывает эффекта. Таким образом, существует частотный порог индукции ДВП. При частоте импульсов выше пороговой ДВП может развиваться либо постепенно, либо по принципу «все или ничего» в зависимости от ритма, интенсивности и частоты условных стимулов. Развитие ДВП происходит по меньшей мере в две (возможно, в три) фазы, с коротким периодом инициации и более длительной фазой устойчивой реакции, которые рассматриваются как аналоги перехода от кратковременной памяти к долговременной.

Третий и, пожалуй, самый интересный момент с точки зрения клеточной аналогии памяти состоит в следующем. В начале восьмидесятых годов было показано, что существует ассоциативная форма ДВП. При этом слабая стимуляция, недостаточная сама по себе для поддержания ДВП, может стать активирующим фактором, если сочетается с сильной стимуляцией через второй путь [16]. Оба вида стимуляции должны совпадать или ассоциироваться во времени, как условный и безусловный раздражители при ассоциативном научении. Можно даже получить такую форму ассоциативного научения, в которой смешаны поведенческие и нейрофизиологические стимулы. Крыса может научиться переходить границу между двумя отделениями ящика в ответ на сигнал, состоящий только из залпа импульсов на гиппокамп, в качестве безусловного раздражителя [17]. Все эти особенности ДВП, взятые вместе, вызывали повышенный интерес к ее изучению по меньшей мере как одной из интригующих моделей памяти.

Гиппокамп как когнитивная карта

Признание ДВП в гиппокампе единственной моделью памяти в восьмидесятых годах скорее всего было закреплено все возраставшим потоком психологических данных о роли этого отдела мозга в обучении животных. В то время как исследования на людях позволяли предполагать участие гиппокампа в переходе от кратковременной декларативной памяти к долговременной (что подтверждалось наблюдениями над обезьянами с поврежденным гиппокампом), опыты на крысах выявили еще один аспект его роли в механизмах памяти. Одним из наиболее выраженных последствий повреждения гиппокампа у этих животных была утрата способности обучаться задачам на пространственную ориентацию, например в лабиринтах. Хотя ранее этот эффект уже наблюдали при выполнении крысами более традиционных задач с лабиринтом, его особенно убедительно продемонстрировал в своем тесте Ричард Моррис, в то время работавший в Университете Сент-Андру (сейчас - в Эдинбурге). Он использовал круглый чан с высокими стенками диаметром около двух метров, наполненный теплой водой, которую замутняли, добавляя молоко. Чан находился в комнате, на стенах которой были легко узнаваемые ориентиры: на северной стене - часы, на южной - источник света, на восточной - клетка и т. д. В чане, чуть ниже уровня жидкости, имелась полка, невидимая в мутной воде. Помещенная в чан крыса начинала беспорядочно плавать, пока более или менее случайно не натыкалась на полку и не взбиралась на нее. Путь, проделанный плавающей крысой, прослеживали с помощью телекамеры, укрепленной над чаном. После нескольких тренировок крыса стала быстро направляться почти прямо к полке, находя ее по окружающим ориентирам - часам, источнику света и клетке. Такой план эксперимента позволял легко оценивать действие различных веществ, повреждений или иных манипуляций по изменению быстроты, с которой крыса находила скрытую полку. Этот тип лабиринта стал настолько популярным, что изобретатель удостоился высшей научной почести - эпонимии (когда явление, метод или инструмент называют чьим-либо именем), а сам аппарат именуется теперь «водяным лабиринтом Морриса» (рис. 9.5). В последние годы он практически вытеснил ящик Скиннера как непременный атрибут всех психологических лабораторий.


rose95.gif

Рис. 9.5. Лабиринт Морриса. В этом тесте крысу помещают в чан с замутненной водой (I), где она учится находить находящуюся под водой площадку (II). После нескольких сеансов обучения крыса плывет сразу по направлению к площадке (III). Однако животные с поврежденным гиппокампом или после нарушения памяти химическими средствами плавает беспорядочно и лишь случайно находит площадку, как будто раньше оно не обучалось этому (IV).


Как же крыса учится находить невидимую полку? Знает ли она, скажем, расстояние, которое проплыла от точки старта, или руководствуется ориентирами, которые видит на стенах комнаты? Такие предположения легко проверить. Изменение начальной точки плавания почти не влияет на способность крысы находить полку. С другой стороны, при изменении относительного положения настенных ориентиров, например при перемещении часов с северной стены на южную, крыса теряет дорогу и плывет к той области чана, где находилась бы полка относительно часов, если бы часы оставались на прежнем месте. Следовательно, животное определяет свое местонахоядение в пространстве, используя в качестве ориентиров окружающие объекты. (Разумеется, о чем-то подобном догадается любой человек без специальной подготовки, но не так рассуждают психологи, воспитанные на заветах Скиннера). В то же время повреждение гиппокампа резко ухудшает способность крыс запоминать или вспоминать пространственные ориентиры, а тем самым и находить кратчайший путь к спасительной полке.

Водяной лабиринт дает ряд преимуществ при анализе пространственного обучения, так как помещенное в чан животное ничем не ограничено в выборе пути; однако эти преимущества могут быть сведены на нет тем, что плавание вызывает определенный стресс, а животное обучается достигать сравнительно случайной цели. До того как Моррис предложил свой лабиринт, при анализе процессов пространственного научения обычно применяли более традиционный вариант той же задачи. Крыс помещали в радиальный лабиринт той или иной конфигурации с четырьмя, шестью или восемью рукавами и обучали находить цель - пищу или воду - в конце одного из рукавов. Животные могли использовать как внутренние ориентиры лабиринта, так и наружные - на стенах комнаты, относительно которых лабиринт можно было поворачивать. С помощью аппаратов такого типа Дэвиду Олтону из Балтимора и Джону О'Кифу и Линн Нейдл (оба экспатрианты из США, в то время работавшие в Университетском колледже в Лондоне, хотя Нейдл впоследствии вернулась в Америку и работает в Тусоне, штат Аризона) удалось установить различие между ориентирами рабочей и справочной памяти крыс, обучавшихся находить цель. Крысы могут использовать ориентиры самого лабиринта, например «второй поворот направо от этой точки». Это форма рабочей памяти, так как такие ориентиры имеют смысл лишь в том случае, если животное помнит, откуда оно только что пришло. Но крысы могут полагаться также и на ориентиры окружающей среды (следуя, например, правилу: «поворот налево по отношению к часам на стене»), используя их как ориентиры фиксированной или справочной памяти.

О'Киф и Нейдл вживляли регистрирующие электроды в гиппокамп крыс и изучали электрическую активность его клеток при пространственном обучении в лабиринте описанного типа. Довольно большая доля клеток давала ритмические вспышки высокочастотных сигналов (4-12 в секунду) более или менее независимо от характера поведения животного. Эта ритмическая активность интересна потому, что она соответствует так называемому тэта-ритму ЭЭГ и, возможно, отражает внимание, необходимое для усвоения или вспоминания той или иной формы поведения. Но еще больший интерес представлял тот факт, что значительное число клеток активировалось только при посещении крысой определенных участков лабиринта и/или при определенных формах поведения (поиски корма, питье воды и т. п.) на этих участках. О'Киф и Нейдл назвали такие нейроны «клетками мест», а участки лабиринта, на которых проявлялась их активность, - «полями мест».

Обобщив полученные данные, они создали теорию «Гиппокампа как когнитивной карты» - так была озаглавлена их книга, вышедшая в 1978 году. Заглавие утверлодало не только главенствующее положение гиппокампа в исследованиях по научению у животных, но и служило символом концептуального перехода психологов от грубых схем бихевиоризма и упрощенного ассоциационизма к представлению о животных как познающих существах, подобных в этом смысле человеку. Познавательное (когнитивное) поведение несводимо к простой цепи сочетаний различных реакций с подкреплением; оно отражает целенаправленную активность, формулировку гипотез и многое другое, что раньше игнорировала англо-американская психологическая школа [18].

Когнитивная карта в понимании О'Кифа и Нейдл - это не просто топографическое отображение пространства, в котором находится животное: она отражает также распределение клеточных систем, осуществляющих анализ и интеграцию пространственных ориентиров в контексте их значения для действий животного. Хотя в модели О'Кифа действительно есть особые «клетки мест» (в восьмидесятых годах другие исследователи обнаружили у обезьян клетки, отвечавшие даже на такие специфические стимулы, как фотографии определенных лиц), концепция когнитивной карты во многих отношениях служит прямой антитезой модели «клеточного алфавита», предложенной Кэнделом. «Клетку места» О'Кифа невозможно выделить и продемонстрировать ее «обучение в блюдце», поскольку ее реакции биологически значимы только в контексте всей деятельности нервной системы и всего поведения организма. Сочетание воспроизводимости и надежности долговременной потенциации как физиологического явления, данные о ключевой роли гиппокампа в памяти млекопитающих и воскресшая надежда на возможность плодотворного исследования клеточных процессов памяти привели в начале восьмидесятых годов к необычайному увлечению экспериментами на гиппокампе. Лаборатории, годами работавшие над более традиционными проблемами памяти, стали получать средства на закупку лабиринтов Морриса и установку оборудования для изучения ДВП. Этому способствовала простота экспериментирования на гиппокампе. Гиппокамп имеется у таких обычных лабораторных животных, как крысы и кролики, с которыми давно уже знакомы психологические и нейрофизиологические лаборатории, а исследования не требуют, например, аквариумов с морской водой для аплизий или знания новейших данных по нейроанатомии цыплят. Столь же доступны технические средства, такие как регистрирующие электроды и химические препараты. Феномен ДВП можно изучать на самых разных уровнях, от более или менее интактного организма до срезов ткани. К концу восьмидесятых годов гиппокампу было посвящено больше публикаций, чем любой другой области мозга, и появился даже новый журнал, полностью посвященный гиппокампу. На его изучение переключились даже лаборатории, работавшие раньше на беспозвоночных, в частности группа Элкона, для которой объектом служил моллюск Hermissenda.

Пользуясь случаем, хотел бы привлечь внимание к определению «англо-американская» в этом абзаце. В главах 5 и 6 я противопоставил сухой, абстрактный редукционизм, который доминировал в исследованиях поведения у психологов англо-американской школы с 20-х по крайней мере до 50-х и 60-х годов, гораздо более перспективным традициям других европейских школ, особенно тем, что создавались некоторыми учениками и последователями Павлова в Советском Союзе, зачастую в обстановке жесткого идеологического давления. В частности, нейрофизиолог Петр Анохин (чья научная деятельность пришлась на период от большевистской революции до его смерти в 1974 году) настойчиво подчеркивал необходимость рассматривать работу мозга как функциональной системы в ее непрерывном комплексном взаимодействии с окружающей средой [19]. Ученики Анохина уже давно разработали методы одновременной регистрации нейронной активности в различных отделах мозга у животных (преимущественно кроликов), настолько свободных в своем повседневном поведении, насколько это возможно в условиях лаборатории. По меньшей мере одновременно с О'Кифом и Нейдл (если не раньше) они обнаружили во многих отделах мозга клетки, активные тогда и только тогда, когда кролик находится в определенном месте и выполняет определенные действия. Одна из учениц Анохина, нейрофизиолог Ольга Виноградова, даже описала ДВП и дала интерпретацию этого явления [20].

Эти работы прошли и до сих пор остаются в значительной части незамеченными на Западе. Причины этого весьма поучительны. Во-первых, большинство материалов издано в России, где практика и стандарты научной публикации часто не соответствуют западным нормам, и на русском языке, что ограничивает их доступность для ученых других стран, которые все больше и больше теряют способность читать на иных языках, кроме английского, вследствие культурного и технического доминирования сначала британской, а потом американской науки, начавшегося в 1930-е годы. Во-вторых, для развития науки в США в послевоенном периоде весьма характерен так называемый «синдром ИНЗ». Изобретено не здесь - эта формулировка символизирует род научного шовинизма, склонности игнорировать или преуменьшать ценность всего, что делается за пределами США; если вы получили подготовку не в США, то лучшее, на что вы могли рассчитывать, - это попасть в один из очень немногих европейских, японских или австралийских институтов, престиж которых признавался вашими коллегами из США. В-третьих, советские исследования часто выполнены на значительно менее совершенном научном оборудовании, чем в западных лабораториях, и потому не воспринимаются как проведенные на должном методическом уровне. В-четвертых (и это, пожалуй, самое важное), до последнего короткого не-марксистского периода психология и нейрофизиология в Советском Союзе развивалась в рамках особой философской традиции, которая нарочито противопоставляла диалектическое понимание взаимосвязи между сознанием и мозгом механистическому редукционизму, преобладавшему в англо-американской науке [21]. В атмосфере подозрительности, свойственной периоду культурной холодной войны, и наивной веры, что приверженность редукционистской доктрине обеспечивает идеологическую свободу [22], исследования советских ученых легко квалифицировать как «тенденциозные». По мере того как становится все более очевидной теоретическая ограниченность наивного редукционизма (во всяком случае в нейронауках), а подозрительность времен холодной войны уходит в историю, настало время, чтобы автономная советская традиция в нейрофизиологии и психологии снова вошла в более интегрированную и универсальную нейронауку.

Биохимический механизм ДВП

После того как с изумительной точностью были картированы нейрофизиологические параметры ДВП, внимание сосредоточилось на его клеточных механизмах. Поскольку ДВП представляет собой целиком физиологически индуцируемую реакцию и в этом смысле может считаться искусственным феноменом, некоторые из критериев памяти, сформулированных в начале этой главы, в данном случае несостоятельны. Интерес представляют клеточные процессы инициирования и поддержания ДВП, а также последствия их подавления. К тому же чем больше становится отделов мозга, в которых обнаруживают ДВП-подобные эффекты, тем важнее знать, что такое ДВП - единый процесс или ряд различных, хотя и сходных, явлений. Иными словами, одинаков ли механизм инициации и поддержания ДВП в различных отделах мозга?

ДВП - это постсинаптический эффект, т. е. он развивается в нейроне в результате поступления внешнего сигнала от другого нейрона, образующего на нем синапс. Одна из первоочередных задач состояла в идентификации нейромедиатора, передающего этот сигнал. Вскоре было установлено, что такой ключевой молекулой служит глутаминовая кислота (глутамат) - аминокислота, хорошо известная как один из самых обычных возбуждающих медиаторов головного мозга, которая в больших количествах содержится в нейронах. Подобно всем медиаторам, глутамат высвобождается из пресинаптического окончания, когда туда приходят по аксону нервные импульсы. Аннет Долфин, работавшая с Тимом Блиссом, показала, что при стимуляции перфорантного пути in vivo усиливается высвобождение глутамата в гиппокампе. Биохимические механизмы этого процесса были довольно подробно исследованы Мариной Линч. Глутамат выделяется с пресинаптической стороны синапса между приходящим сюда волокном перфорантного нерва и нейроном гиппокампа. Исходя из этих данных, Линч и Блисс утверждали (как ранее Кэндел в случае серотонина у аплизий), что для ДВП важное значение имеет пресинаптическая пластичность, а постсинаптическая клетка просто реагирует надлежащим образом на более сильную стимуляцию глутаматом.

Но в биологии все непросто. Глутамат - всего лишь один из многих десятков медиаторов, и он взаимодействует с постсинаптической клеткой несколькими различными способами. Существует по меньшей мере три разных типа постсинаптических рецепторов глутамата; их распределение между чувствительными к этому веществу клетками различно, у них разные фармакологические свойства, и каждый из них вызывает специфическую постсинаптическую реакцию. Таким образом, хотя рецепторы всех трех типов взаимодействуют с глутаматом, некоторые из них реагируют и с другими химически сходными молекулами, а есть и рецепторы с иными формами специфичности. Один из классов рецепторов для глутамата известен как NMDA-рецепторы, поскольку действие глутамата на них можно имитировать инъекцией сходного с ним соединения N-метил-D-аспарагиновой кислоты. Введение веществ, специфически связываемых NMDA-рецепторами, блокирует индукцию ДВП, но не подавляет уже развившуюся потенциацию. Препараты, реагирующие с другими типами рецепторов глутамата, не обладают таким действием. Поэтому можно заключить, что рецепторы NMDA-типа играют важную роль в инициировании ДВП. В отличие от группы Блисса другие лаборатории продемонстрировали увеличение количества этих рецепторов на нейронах гиппокампа после индукции ДВП, что переместило центр интереса с пресинаптических механизмов на постсинаптические.

Каким образом усиление секреции глутамата или увеличение количества взаимодействующих с ним рецепторов вызывает последующие пре- и постсинаптические изменения? Как и у аплизий, ключевую роль здесь играют ионы кальция. Если концентрация кальция в инкубационной среде для срезов гиппокампа возрастает, индукция ДВП облегчается, тогда как после удаления кальция вызвать ДВП не удается. Введение в постсинаптическую клетку молекул, связывающих ионы кальция и выводящих их из раствора, тоже блокирует ДВП. Это позволило Гэри Линчу1, работающему в Ирвине (Калифорния), предположить, что ДВП инициируется каким-то процессом, включающим усиленное поглощение кальция постсинаптической клеткой. По мере появления новых данных модель Линча обогащалась деталями, но в ее раннем варианте, который он разработал вместе со своим давним сотрудником Мишелем Бодри [24], предполагаемое действие кальция состояло в активации фермента на постсинаптической стороне, разрушающего белки.


*1) Двое Линчей, Марина и Гэри, насколько им самим известно, не родственники; помимо разной национальности (она ирландка, а он из Калифорнии), их разделяют и убеждения: первая «пресинаптистка», а второй «постсинаптист».


Согласно этой модели, активированный фермент действовал на уровне синаптической мембраны, где в результате возрастало количество доступных связывающих участков NMDA-рецепторов, которые до того оставались погруженными в поверхностный слой мембраны и потому неактивными. А большее число связывающих участков означало повышенную чувствительность постсинаптической клетки к глутамату и, следовательно, большую вероятность ее возбуждения.

Между тем известны многообразные внутриклеточные эффекты кальция, поэтому возможны и другие пути его воздействия на синаптическую мембрану. К наиболее важным молекулярным компонентам мембраны относятся различные белки, способные обратимо присоединять фосфатные группы. При связывании фосфата (этот процесс называется фосфорилированием) форма белка изменяется, что может приводить к закрытию или открытию каналов, пронизывающих всю толщу мембраны от ее наружной поверхности до внутренней. Эти каналы обусловливают проницаемость мембраны для ионов или молекул, которые могут проникать в клетку и действовать как сигналы для инициации биохимических каскадов, что в конечном итоге приводит к синтезу новых компонентов синаптической мембраны и тем самым к перестройке синапса. В следующей главе я расскажу, как это происходит. Фосфорилированию подвержены многие мембранные белки, постсинаптические и пресинаптические, а ферменты, катализирующие этот процесс, носят общее название протеинкиназ. Одна из них специфически активируется кальцием (и потому ее также сокращенно обозначают Са-ПК). В конце восьмидесятых годов благодаря работам нескольких лабораторий стало ясно, что вещества, подавляющие активность этого фермента, блокируют и ДВП. В связи с этим пришлось пересмотреть модели механизмов ДВП и включить в них эффект, опосредуемый через фосфорилирование специфических пре- и постсинаптических мембранных белков [25]. Хотя еще в полном разгаре споры о том, что важнее - пре- или постсинаптические изменения, не исключено (как это нередко, хотя и не всегда, бывает в науке), что в чем-то правы оба лагеря. Механизмы памяти скорее всего связаны с изменениями по обе стороны синапса.

Можно ли считать ДВП памятью?

Долговременная потенциация в гиппокампе, несомненно, представляет собой необычайно перспективную модельную систему, которая уже позволила получить много данных о том, как можно связать нейрофизиологические изменения с биохимическими и структурными механизмами. Однако я не убежден, что уже поставлены наиболее важные биохимические вопросы, - отчасти потому, что слишком много внимания уделялось интимным синаптическим процессам, связанным с инициацией ДВП, и на удивление мало - самой долговременности этого феномена, которая кажется мне наиболее интересной его стороной. Изменения в притоке ионов кальция, в фосфорилировании мембранных белков или в активации NMDA-рецепторов - все это возможные механизмы кратковременного изменения электрических свойств клетки, но если мы хотим, чтобы ДВП действительно служила моделью долговременной памяти, важно знать, что сообщает этому изменению устойчивость, что привносит букву Д в аббревиатуру ДВП.

Особая ценность ДВП как модели, помимо возможности еще более свободно, чем в случае с аплизией, переходить с одного уровня анализа на другой (от интактного организма к срезу), определяется геометрическим фактором. Клеточные и биохимические изменения, которые нужно связать с поведенческими реакциями, так же как образование следов памяти, должны быть точно локализованы во времени и пространстве, в соответствии с критериями, сформулированными в начале этой главы. Гиппокамп - это одна из областей мозга млекопитающих, строение, связи и геометрия которой хорошо известны, что делает в принципе осуществимым такое картирование. Поэтому при разработке моделей памяти гиппокамп открывает большие возможности для проверки хеббовских закономерностей обучения на нейронах, связи которых действительно известны, а не остаются предметом догадок [26}.

Возвращаясь к вопросу, с которого я начал обсуждение феномена долговременной потенциации, попробуем решить, действительно ли она может служить моделью длительных изменений в нервной системе или, более того, это и есть сам механизм памяти? В пользу того, что ДВП - это механизм, обеспечивающий хранение в мозгу следов памяти, говорит (как я уже отмечал) прежде всего хорошо известная роль гиппокампа в различных формах памяти, так же как и факт существования ассоциативных форм ДВП. Но дальнейшие аргументы носят уже гипотетический характер. Так, например, ДВП усиливается у крыс, обученных находить корм в оперантных задачах, тогда как блокирующие ДВП вещества препятствуют также обучению в условиях водного лабиринта. С возрастом крысы утрачивают способность обучаться новым навыкам, и в то же время у них не наблюдается потенциация. Но если сопоставить эти доводы с критериями, сформулированными в начале главы, они уже не будут выглядеть столь убедительными.

Имеются два рода наблюдений, которые, мне кажется, ставят под сомнение правомерность прямых параллелей между ДВП и памятью. Во-первых, появляется все больше данных, что подобные ДВП явления не ограничены гиппокампом - при известных обстоятельствах они проявляются во многих других областях мозга, в том числе (и особенно) в его коре, как показали Линн Байндмен в Лондоне и Алексей Воронин в Москве [27]. Это ставит под сомнение доводы в пользу связи между ДВП и процессами памяти в гиппокампе. В одном из своих изящных исследований Кэрол Барнс, чьи ранние работы были посвящены выявлению корреляций между старением, научением и ДВП, содержала крыс в информационно-обогащенной среде, как это было в экспериментах Розенцвейга, Беннета и Даймонда (глава 6). Она нашла, что чем дольше крысы оставались в такой среде, тем слабее у них в последующем индуцировалась ДВП в гиппокампе [28].

Моя собственная интерпретация этого наблюдения (не обязательно совпадающая с интерпретацией автора) подсказывает мысль, что ДВП могла быть не чем иным, как простым артефактом, возможным только тогда, когда животные выросли в сильно обедненных условиях лаборатории. Может быть, способность их к формированию когнитивных карт в гиппокампе в таких условиях просто не находила себе применения, и поэтому их мозг жадно реагировал на новую информацию при нейрофизиологической стимуляции входных нервных путей. В более нормальных, естественных условиях, где такая стимуляция и ее последствия были бы повседневными событиями, ДВП, возможно, вообще бы отсутствовала. Таким образом, ДВП может быть артефактом, следствием обедненных условий содержания лабораторных животных. Это сам по себе интересный феномен, но еще более аномальный, чем позволяло предполагать осторожное предупреждение Блисса и Лёмо в 1973 году. Прежде чем дальше теоретизировать по поводу такого предположения, его нужно проверить, чтобы установить, можно ли вызвать ДВП у животных, выросших в естественных, не столь однообразных условиях дикой природы.


Литература

к гл. 8

1. Grey Walter W. The Living Brain, Duckworth, 1953.

2. Hyden Я. Changes in brain protein during learning. In: Ansel G. В., Bradley P. B. (eds) Macromolecules and Behaviour. Macmillan, 1973, pp. 3—26.

3. Dingman W., Sporn M. B. The incorporation of 8-azaguanine into rat brain RNA and its effect on maze learning by the rat; an enquiry into the biochemical basis of memory. Journal of Phychiatric Research 1, 1—11, 1961.

4. Несмотря на ряд высказанных ранее сомнений, сейчас утвердилось однозначное представление. См. Davis H. P.t Squire L R. Protein synthesis and memory: a review. Psychological Bulletin 96, 518—559, 1984.

5. См., например, Ziman /., Public Knowledge. Cambridge University Press, 1968; Merton R. K. Science Technology and Society in Seventeenth Century England. Fertig, 1970.

6. Это подчеркивает Бруно Латур: Latour B. Science in Action, Open University Press, 1987.

7. Horn G., Bateson P. P. G.t Rose S. P. R. Experience and plasticity in the nervous system. Science 181, 506—514, 1973.

8. Stent G .S. Paradoxes of Progress. Freeman, San-Francisco, 1978.

9. Mekler I. B. Mechanism of biological memory. Nature 215, 481— 484, 1967.

10. Griffith /., Mahler H. R. DNA ticketing theory of memory. Nature 223, 580-582, 1969.

11. Conrad M. Molecular information structures in the brain. Journal of Neuroscience Research 2, 233—254, 1974.

12. Fridrich P. Protein Structure: the primary substrate of memory. Neuroscience 35, 1-7, 1990.

13. McConnell J. У. Memory transfer through cannibalism in planaria. Journal of Neuropsychiatry 3 (supp. 1) 42—48, 1962. О раннем увлечении такими экспериментами см.: Corning Ж С., Rather S. С. (eds) Chemistry of Learning. Plenum, 1967. Позже энтузиазм поубавился — см. Corning W. C., Riccio D. The planarian controversy. In: Byrne W.L. (ed.) Molecular Approaches to Learning and Memory. Academic Press, 1970, pp. 107—150.

14. Babich F. R., Jacobson A. L, Bubash S.f Jacobson A. Transfer of response to naive rats by injection of ribonucleic acid extracted from trained rats. Science 149, 656-657, 1965.

15. Cameron D. E., Sved S., Solyom L., Wainrib B.t Bank K. Effects of ribonucleic acid on memory deficit in the aged. American Journal of Psychiatry 120, 320-325, 1963.

16. Ott J., Matthies H.-J. Some effects of RNA precursors on development and maintenance of long-term memory: hippocampal and cortical pre- and posttraining application of RNA precursors. Psychopharmacologia 28,195—204, 1973.

17. Watson P. War on the Mind, Hutchinson, 1978.

18. Byrne W. L, and 22 others, Memory transfer. Science 153, 658—659, 1966.

19. Ungar G.t Desiderio D. M., Parr W. Isolation, identification and synthesis of a specific behavoiur-inducing brain peptide, Nature 238, 198—202, 1972; Stewart W. W. Comments on the chemistry of scotophobin, Nature 238, 202-209, 1972.

20. Glassman E. The biochemistry of learning: an evaluation of the role of RNA and protein. Annual Review of Biochemistry 38, 387—400, 1969.

21. Bateson P. P. G. Are they really the products of learning? In: Horn G., Hinde R.A. (eds) Short-term Changes in Neural Activity and Behaviour, Cambridge University Press, 1969, pp. 553-566.

22. Один из моих аспирантов, Джон Хембли, вернувшись в Австралию, провел эксперименты, показавшие, что эффекты от введения ингибиторов белкового синтеза можно воспроизвести путем инъекции больших количеств некоторых аминокислот. См.: Натbleу /., Rogers L /. Some neurochemical correlates of permanent learning deficits associated with intracerebral injections of amino acids in young chick brain. Proceedings of the International Society of Neurochemistry 6, 359, 1977.

23. Rose S. P. R. What should a biochemistry of learning and memory be about? Neuroscience 6, 811—821, 1981.

24. Rose S. P. R. Early visual experience, learning and neurochemical plasticity in the rat and the chick. Philosophical Transactions of the Royal Society, Series B, 278, 307-318, 1977.

25. См. обзор: Wood W. B. (ed.) The Nematode C. elegans, Cold Spring Harbor Laboratory Press, 1988.

26. McGaugh J. V. Peripheral Signalling of the Brain, in press, 1992; De Weid D. (ed.) Neuropeptides, Basics and Perspectives. Elsevier, 1990; Izquerdo L Different forms of posttraining memory processing. Behavioral and Neural Biology 51, 171-202, 1989.

27. Наиболее оптимистичную (и тенденциозную) оценку перспективности таких средств можно найти в работе: Dean W., Morgenthaler J. Smart Drugs and Nutrients: How to improve your memory and increase your intelligence using the latest discoveries in neuroscience, В and J Publications, Santa Cruz, California, 1990.

К гл. 9

1. Rose S. P. R. What should a biochemistry of learning and memory be about? Neuroscience 6, 811—821, 1981.

2. McGaugh J. L. Time-dependent processes in memory storage. Science 153, 1351-1358, 1964.

3. Kandel E. R., Schwartz J. H., Jessell Т. М. Principles of Neural Science, Elsevier, 1991 (последнее издание этой очень важной книги).

4. Kandel E. R. From metapsychology to molecular biology: explorations into the nature of anxiety. American Journal of Psychiatry 140, 1277—1293, 1983.

5. Allport S. Explorers of the Black Box, Norton, 1986.

6. Kupfermann /., Castellucci K, Pinsker Я., Kandel E. R. Neural correlates of habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science 167, 1743-1745, 1971.

7. Rayport S. G.f Schacher S. Synaptic plasticity in vitro: cell culture of identified Aplysia neurons mediating short-term habituation and sensitization. Journal of Neuroscience 6, 759—763, 1986.

8. Carew T. J., Hawkins Я D., Kandel E. Я Differential classical conditioning of a defensive withdrawal reflex т Aplysia californica. Science 219, 397—400, 1983.

9. Goelet P., Castellucci V. F., Schacher S., Kandel E. Я The long and the short of long-term memory — molecular framework. Nature 322, 419—422, 1986.

10. Morris Я G. M. Synaptic plasticity, neural architecture and forms of memory. In: McGaugh J. L., Weinberger N. M., Lynch G. (eds) Brain Organization and Memory: Cells, systems and circuits, Oxford University Press, 1990, pp. 52-57.

11. Colebrook E., Lukowiak К. Learning by the Aplysia model system: lack of correlation between gill and gill motor neuron responses. Journal of Experimental Biology 135, 411-429, 1988.

12. Bailey C. H.t Chen M. Morphological alterations at identified sensory neuron synapses during long-term sentilization in Aplysia. In: Squire R.L., Lindenlaub E. (eds) The Biology of Memory. Schattauer Verlag, 1990, pp. 135—154.

13. Rankin C. H., Carew T. J. Development of learning and memory in Aplysia, II habituation and dishabituation. Journal of Neuroscience 7, 133—143, 1987; Carew T. /., Marcus E. A., Nolen T. G., Rankin C. H., Stopfer M. The development of learning and memory in Aplysia. In: McGaugh J. L., Weinberger N. M., Lynch G. (eds) op. cit, pp. 27—51.

14. Alkon D. L. Memory Traces in the Brain, Cambridge, 1987.

15. Bliss T. V. P., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology 232, 331—356, 1973.

16. Levy W. B.t Steward O. Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8, 791-797, 1983.

17. См. ряд статей в сборнике Matthies H.-J. (ed.) Learning and Memory: Mechanisms of information storage in the nervous system. Pergamon, 1986.

18. O'Keefe /., Nadel L The Hippocampus as a Cognitive Map, Oxford University Press, 1978 (несомненно, появится новое издание этой важной книги).

19. Anokhin P. К. Biology and Neurophysiology of the Conditioned Reflex and its Role in Adaptive Behaviour. Pergamon, 1974.

20. Vinogradova O. Registration of information and the limbic system. In: Horn G., Hinde RA. (eds) Short-term Changes in Neural Activity and Behaviour, Cambridge University Press, 1969, pp. 96—140.

21. Graham L R. Science and Philosophy in the Soviet Union. Knopf, 1972.

22. Rose S. P. R. (ed.) Against Biological Determinism. Allision and Busby, 1982.

23. Rolls E. Functions of neuronal networks in the hippocampus and of backprojections in the cerebral cortex in memory. In: McGaugh J. L., Weinberger N. M., Lynch G. (eds) op. cit., pp. 184—210.

24. Lynch G., Baudry M. The biochemistry of memory: a new and specific hypothesis. Science 224, 1057-1063, 1984.

25. См., например, статьи по фармакологии и физиологии LTP: Bliss et al, Malinow et al.; Foster, McNaughton и дискуссию in: Squire L.R, Lindenlaub E. (eds) op. cit., pp. 223-272.

26. Singer W. Search for coherence: a basic principle of cortical self-organization. Concepts in Neuroscience 1, 1—27, 1990.

27. Voronin L L Long-term potentiation at neocortical level. In: Matthies H.-J. (ed.) op. cit., pp. 13—25.

28. Barnes C. Lecture at the Brain Research Association annual meeting, Bristol, 1990.
(Последние исправления - 26.11.2005)

На главную страницу